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Abstract. We describe the completed local rings of the trianguline variety at certain
points of integral weights in terms of completed local rings of algebraic varieties re-
lated to Grothendieck’s simultaneous resolution of singularities. We derive several local
consequences at these points for the trianguline variety: local irreducibility, descrip-
tion of all local companion points in the crystalline case, combinatorial description of
the completed local rings of the fiber over the weight map, etc. Combined with the
patched Hecke eigenvariety (under the usual Taylor-Wiles assumptions), these results in
turn have several global consequences: classicality of crystalline strictly dominant points
on global Hecke eigenvarieties, existence of all expected companion constituents in the
completed cohomology, existence of singularities on global Hecke eigenvarieties.

Contents

1. Introduction 2
2. The geometry of some schemes related to the Springer resolution 9
2.1. Preliminaries 9
2.2. Analysis of the global geometry 11
2.3. Analysis of the local geometry 13
2.4. Characteristic cycles 17
2.5. Completions and tangent spaces 22
3. A local model for the trianguline variety 25
3.1. Almost de Rham BdR-representations 25
3.2. Almost de Rham B+

dR-representations 30
3.3. Trianguline (ϕ,ΓK)-modules over RK [1

t
] 35

3.4. A formally smooth morphism 41
3.5. Trianguline (ϕ,ΓK)-modules over RK 45
3.6. The case of Galois representations 51
3.7. The trianguline variety is locally irreducible 54
4. Local applications 59

We thank Laurent Berger, Lucas Fresse, Gérard Laumon, Emmanuel Letellier, Michael Rapoport,
Simon Riche, Claude Sabbah, Olivier Schiffmann, Tobias Schmidt and Peter Scholze for discussions or
answers to questions. E. H. is partially supported by SFB-TR 45 and SFB 878 of the D.F.G., B. S. and
C. B. are supported by the C.N.R.S.

1



4.1. Further properties of the trianguline variety 59
4.2. Local companion points 61
4.3. A locally analytic “Breuil-Mézard type” statement 64
5. Global applications 70
5.1. Classicality 70
5.2. Representation theoretic preliminaries 74
5.3. Companion constituents 77
5.4. Singularities on global Hecke eigenvarieties 85
References 87

1. Introduction

Let p be a prime number and n ≥ 2 an integer. The aim of this paper is to prove several
new results in the theory of p-adic overconvergent automorphic forms on unitary groups
and in the locally analytic p-adic Langlands programme for GLn. To a definite unitary
group over a totally real number field, one can associate several rigid analytic Hecke
eigenvarieties. A p-adic overconvergent eigensystem of finite slope is a point on such an
eigenvariety and we say that it is crystalline if its associated p-adic Galois representa-
tion is crystalline at p-adic places. Under standard Taylor-Wiles hypothesis and mild
genericity hypothesis, we prove, among other results, that any crystalline overconvergent
eigensystem of finite slope and dominant weight comes from a classical automorphic form.
Moreover, we show that such an overconvergent eigenform is a singular point on its Hecke
eigenvariety once its associated refinement is critical enough (in a specific sense).

Finally we address the problem of companion forms. It is a well known phenomenon in
the theory of p-adic automorphic forms that there can exist several eigenforms of distinct
weight with the same associated Galois representation, i.e. with the same system of Hecke
eigenvalues for the Hecke action away from p. Under the same assumptions as above we
explicitly describe all such companion forms of a fixed classical form (and in fact we
determine the locally analytic representations generated by these companion forms) in
terms of combinatorial data (elements of the Weyl group) attached to the associated
Galois representation. This description was conjectured by one of us (C.B.) in [13].

The key insight is, that the properties of p-adic automorphic forms we are interested
in, are encoded in the geometry of a rigid analytic space that parametrizes certain rep-
resentations of a local Galois group. We show that the local geometry of this so called
trianguline variety can be studied in terms of varieties that are familiar from geometric
representation theory.

We now describe our main results and methods in more detail.
Let F+ be a totally real number field, F an imaginary quadratic extension of F+

and G a unitary group in n variables over F+ which splits over F and over all p-adic
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places of F+, and which is compact at all infinite places of F+. Denote by Sp the
set of places of F+ dividing p and fix L a finite extension of Qp which is assumed to
be “big enough”. Let Ŝ(Up, L)an be the space of overconvergent p-adic automorphic
forms on G of tame level Up, a compact open subgroup of G(A∞p), i.e. the space of
locally analytic functions from G(Q)\G(A∞)/Up to L. This is an admissible locally Qp-
analytic representation of G(F+ ⊗Q Qp) '

∏
v|p GLn(F+

v ). Let S be a finite set of finite
places of F+ containing Sp and the v - p such that Uv is not hyperspecial. Let mS be a
maximal ideal of the Hecke algebra such that the localization Ŝ(Up, L)an

mS is non zero. Let
ρ : Gal(F/F ) −→ GLn(Fp) be the mod p irreducible representation associated to mS that
we suppose to be irreducible. There is a rigid analytic variety Y (Up, ρ) over L (called the
Hecke eigenvariety) that parametrizes the systems of Hecke eigenvalues of finite slope in
the representation Ŝ(Up, L)an

mS .
A point x ∈ Y (Up, ρ) can be uniquely characterized by a pair (ρ, δ) where ρ is a Galois

deformation of ρ on a finite extension of L and δ = (δv)v|p = (δv,i)(v,i)∈Sp×{1,...,n} is a
locally Qp-analytic character of ((F+ ⊗Q Qp)×)n, the diagonal torus of G(F+ ⊗Q Qp) ∼=∏
v|p GLn(F+

v ). We are interested in points x = (ρ, δ) that are crystalline generic, by which
we mean that it satisfies the following two conditions: First, the eigenvalues (ϕv,i)i∈{1,...,n}
of ϕqv (the linearization of the crystalline Frobenius on Dcris(ρv)) satisfy ϕv,iϕ−1

v,j /∈ {1, qv}
for i 6= j and v|p, where qv is the cardinality of the residue field of F+

v . And second, we
demand that the Hodge-Tate weights of ρ at places above p are regular (i.e. all the Sen
endomorphisms of the restrictions of ρ to decomposition groups over p are separable).
Under these assumptions (and in fact under much weaker assumptions on ρ), one can
associate to x = (ρ, δ), for each v|p, two permutations wv, wx,v ∈ S [F+

v :Qp]
n : the first

one measuring the relative positions of the weights of the δv,i, i ∈ {1, . . . , n} (suitably
normalized) with the antidominant order (see before Lemma 3.7.4) and the second one
measuring the relative positions of two flags (see before Proposition 3.6.4 and Proposition
3.7.1) coming from the p-adic Hodge Theory of ρv. We set:

w := (wv)v∈Sp and wx := (wx,v)v∈Sp ∈ S :=
∏
v|p
S [F+

v :Qp]
n .

When w is the longest element w0 in S, or equivalently when the algebraic weight of δ
is dominant, and ρv is crystalline for each v ∈ Sp, we say that x = (ρ, δ) ∈ Y (Up, ρ)
is crystalline generic strictly dominant. Finally, we say that x′ = (ρ, δ′) ∈ Y (Up, ρ) is
a companion point of x if δ′δ−1 is a Qp-algebraic character. It is conjectured in [13,
Conj.6.5] that the companion points of x are parametrized by w′ ∈ S such that wx � w′

where � is the Bruhat order (note that w′ is w′w0 with the convention in loc.cit.). We
write xw′ for the conjectural companion point associated to w′ (we have x = xw0).

Consider the following assumptions, called “standard Taylor-Wiles hypothesis” above:

(i) p > 2;
(ii) the field F is unramified over F+ and G is quasi-split at all finite places of F+;
(iii) Uv is hyperspecial when the finite place v of F+ is inert in F ;
(iv) ρ(Gal(F/F (ζp)) is adequate ([62, Def.2.3]).

Theorem 1.1 (Theorem 5.1.3). Assume (i) to (iv). If x = (ρ, δ) ∈ Y (Up, ρ) is generic
crystalline strictly dominant, then x comes from a classical automorphic form of G(AF+).
In particular ρ is automorphic.
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We point out that the assumption that x is strictly dominant is a necessary assumption.
However, if x = (ρ, δ) ∈ Y (Up, ρ) is generic crystalline (but not necessarily strictly
dominant) there exists a generic crystalline strictly dominant point x′ = (ρ, δ′) ∈ Y (Up, ρ)
(see Remark 5.1.4) and hence our result still implies that ρ is automorphic (though the
point x does not necessarily come from a classical automorphic form itself).

Theorem 1.2 (Theorem 5.4.2). Assume (i) to (iv) and Up small enough. If x ∈ Y (Up, ρ)
is generic crystalline strictly dominant such that wx is not a product of pairwise distinct
simple reflections, then x is a singular point on Y (Up, ρ).

Theorem 1.3 (Theorem 5.3.3). Assume (i) to (iv) and Up small enough. If the Ga-
lois representation ρ : Gal(F/F ) −→ GLn(L) comes from a generic crystalline strictly
dominant point x = (ρ, δ) ∈ Y (Up, ρ), then all companion constituents associated to
ρ in [12, §6], [13, Conj.6.1] occur (up to twist) as G(F+ ⊗Q Qp)-subrepresentations of
Ŝ(Up, L)an

mS [mρ]. In particular all companion points xw′ of x for wx � w′ exist in Y (Up, ρ).

Several cases or variants of Theorem 1.1 and Theorem 1.2 were already known. In the
setting of Coleman-Mazur’s eigencurve Theorem 1.1 was proven by Kisin ([47]). When
wx = w0 Theorem 1.1 was proven by Chenevier ([20, Prop.4.2]), and when wx is a product
of distinct simple reflections Theorem 1.1 was proven in [17, Th.1.1] under slightly more
restrictive conditions on the ϕv,i. In the setting of the completed H1 of usual modular
curves Theorem 1.3 was proven in [14]. When n = 2 Theorem 1.3 was proven by Ding
([26], see also [24]), and when n > 2 a few companion constituents were known to exist
([13], [25]).

We now explain the main steps in the proofs of the above three theorems, and in doing
so we also describe our local results.

The first step is that one can replace in all statements the representation Ŝ(Up, L)an
mS

by the patched locally Qp-analytic representation Πan
∞ of G(F+⊗QQp) constructed in [19]

and the eigenvariety Y (Up, ρ) by the patched eigenvariety Xp(ρ) constructed in [16, §3.2]
(these objects only exist under hypothesis (i) to (iv)). Recall that Xp(ρ) is obtained from
Πan
∞ in the same way as Y (Up, ρ) is obtained from Ŝ(Up, L)an

mS (see loc.cit.). It was shown
in [16, §3.6] that Xp(ρ) is a union of irreducible components of Xρp ×

∏
v|pXtri(ρv) × Ug

where Xρp is the rigid analytic generic fiber of the framed deformation space of ρ at the
places of S\Sp, Ug is an open polydisc and Xtri(ρv) is the so-called trianguline variety at
v|p, i.e. the closure of points (r, δ) where r is a trianguline deformation of ρv and δ a
triangulation on Drig(rv) seen as a locally Qp-analytic character of the diagonal torus of
G(F+

v ) ' GLn(F+
v ).

We say that a character δ of ((F+
v )×)n is generic if δiδ−1

j and δiδ
−1
j | |v are not Qp-

algebraic characters of (F+
v )× for i 6= j, where | |v is the norm character of F+

v . Our
main local result is the following theorem.

Theorem 1.4 (Corollary 3.7.10). Let x = (r, δ) ∈ Xtri(ρv) such that δ is generic locally
algebraic with distinct weights, then the rigid variety Xtri(ρv) is normal (hence irreducible)
and Cohen-Macaulay in an affinoid neighbourhood of x.

The proof of Theorem 1.4 follows from the key discovery that the formal completion
X̂tri(ρv)x of Xtri(ρv) at the point x can be recovered, up to formally smooth morphisms,
from varieties studied in geometric representation theory. It follows from our assumption
on the Sen weights of r that this representation is almost de Rham in the sense of Fontaine
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([32]). As an extension of almost de Rham representations is still almost de Rham, every
deformation of r on a nilpotent thickening of L is almost de Rham. Let r+

dR := B+
dR⊗Qp r

and rdR := BdR ⊗Qp r be the B+
dR and BdR-representations associated to r. A result

of Fontaine tells us that there exists an equivalence of categories W 7→ (DpdR(W ), νW )
between the category of almost de Rham BdR-representations and the category of pairs
(D,N) where D is a finite dimensional Qp-vector space and N a nilpotent endomorphism
of D. The set of Galois stable B+

dR-lattices in W is then in natural bijection with the
set of separated exhaustive filtrations of DpdR(W ) stable under νW . Moreover, when
the Sen weights of the B+

dR-lattice are multiplicity free, the corresponding filtration of
DpdR(W ) is a complete flag. Let SpA ⊂ Xtri(ρv) be a nilpotent thickening of the point x.
Then the representation rA is almost de Rham, and we can use a key result of Kedlaya-
Pottharst-Xiao ([45]) and Liu ([51]) on global triangulations to construct a complete
flag of DpdR(rA,dR) stable under νrA,dR . These constructions give us two natural flags in
DpdR(rA,dR) that are stable under the same endomorphism νrA,dR of DpdR(rA,dR). It it
therefore natural to consider the following construction.

Denote by g ' gl[F
+
v :Qp]

n (resp. b) the L-Lie algebra of G := (ResF+
v /Qp GLn/F+

v
)L (resp.

of the Borel subgroup of upper triangular matrices) and let:
g̃ := {(gB, ψ) ∈ G/B × g | Ad(g−1)ψ ∈ b} ⊆ G/B × g.

Then g̃ is a smooth irreducible algebraic variety over SpecL of dimension dimG and
the projection g̃ −→ g is called Grothendieck’s simultaneous resolution of singularities.
The fiber product X := g̃×g g̃ is equidimensional of dimension dimG and its irreducible
components Xw′ are parametrized by w′ ∈ S [F+

v :Qp]
n (the Weyl group of G). Under our

hypothesis on x, the L ⊗Qp F+
v -module DpdR(rdR) is free of rank n and equipped with

a nilpotent endomorphism N and with two flags: the first one D• comes from the tri-
angulation on Drig(r), the second one Fil• being the Hodge filtration associated to rdR.
These two flags are preserved by the endomorphism N , so that we can define a point
xpdR := (D•,Fil•, N) of X(L) (modulo a choice of basis on DpdR(r)). In fact, we obtain
a map:

X̂tri(ρv)x −→ X̂xpdR

and we can show that it factors through X̂w,xpdR (and that xpdR ∈ Xw(L)) where w ∈
S [F+

v :Qp]
n measures the relative positions of the weights of the δi, i ∈ {1, . . . , n} with the

antidominant order. It remains to prove that this map is formally smooth to deduce the
first of the following two statements, which themselves imply Theorem 1.4.

Theorem 1.5 (see (3.33)). Let x as in Theorem 1.4, up to formally smooth morphisms
the formal schemes X̂tri(ρv)x and X̂w,xpdR are isomorphic.

Theorem 1.6 (see §2.3). The algebraic varieties Xw′ are normal and Cohen-Macaulay
for any w′ ∈ S [F+

v :Qp]
n .

The Cohen-Macaulay property in Theorem 1.6 was already known and due to Bezrukavni-
kov-Riche ([9]) but the normality (see Theorem 2.3.6) is a new result (to the knowledge
of the authors). Theorem 1.1 then follows almost immediately from Theorem 1.4 using
[17, Th.3.9] (we refer to the introduction of loc.cit. for some details on this implication).

Theorem 1.5 has many other consequences on the local geometry of Xtri(ρv). For
instance we can deduce that the weight map is flat in a neighbourhood of x and, when
r is de Rham, one can give an explicit bound for the dimension of the tangent space
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of Xtri(ρv) at x, generalizing [17, Th.1.3], see §4.1. When x is moreover crystalline and
strictly dominant, one can also completely describe the local companion points of x on
Xtri(ρv), i.e. those x′ = (r, δ′) ∈ Xtri(ρv) such that δ′δ−1 is Qp-algebraic. We obtain the
following result, which is a purely local analogue of Theorem 1.3.

Theorem 1.7 (Theorem 4.2.3). Let x = (r, δ) ∈ Xtri(ρv) as in Theorem 1.4 and wx ∈
S [F+

v :Qp]
n measuring the relative positions of D• and Fil•. Assume x crystalline strictly

dominant, then the local companion points of x are parametrized by w′ ∈ S [F+
v :Qp]

n with
wx � w′.

The existence of companion points on Xtri(ρv) for wx � w′ is proven by a Zariski-
density argument which doesn’t involve Theorem 1.5. But the fact that there can’t be
others (for other values of w′), i.e. that these points exhaust all companion points of x
on Xtri(ρv), relies on the geometry of Xw′ via Theorem 1.5 (see Lemma 2.2.4).

The description of the local geometry in Theorem 1.5 allows us to derive another result
about the geometry ofXtri(ρv). Denote byRr the complete local ring parametrizing (equal
characteristic) framed deformations of r over local artinian L-algebras of residue field L
and by Z(SpecRr) the free abelian group generated by irreducible closed subschemes of
SpecRr. If A is quotient of Rr define:
(1.1) [SpecA] :=

∑
p minimal

m(p, A)[SpecA/p] ∈ Z(SpecRr)

where the sum is over the minimal prime ideals p of A and m(p, A) ∈ Z≥0 is the length
of Ap as Ap-module. For any rigid variety Y , denote by ÔY,y its completed local ring
at y ∈ Y . When δ is generic, the projection (r′, δ′) 7→ r′ induces a closed immer-
sion Spec ÔXtri(ρv),(r,δ) ↪→ SpecRr. The projection (r′, δ′) 7→ δ′ induces a morphism
from Xtri(ρv) to the rigid space of locally Qp-analytic characters of the diagonal torus
of G(F+

v ) and we let Xtri(ρv)δ be the fiber above δ. We obtain a closed immersion
Spec ÔXtri(ρv)δ,(r,δ) ↪→ SpecRr. The quite striking result is that, though Xtri(ρv) is re-
duced, the fiber Xtri(ρv)δ can be highly nonreduced, even “contain” Kazhdan-Lusztig
multiplicities! The following result was inspired by Emerton-Gee’s geometric “Breuil-
Mézard” conjecture ([31, Conj.4.2.1]). Its proof uses Theorem 1.7 and relies (again) on
the geometry of Xw via Theorem 1.5 (see §2.4).

Theorem 1.8 (Theorem 4.3.9). For any crystalline generic deformation r of ρv with
distinct Hodge-Tate weights and any absolutely irreducible constituent Π of a locally Qp-
analytic principal series of GLn(F+

v ), there exists a unique codimension [F+
v : Qp]n(n+3)

2 -
cycle Cr,Π in Z(SpecRr) such that, for all locally Qp-analytic characters δ, we have:

[Spec ÔXtri(ρv)δ,(r,δ)] =
∑
Π
mδ,ΠCr,Π in Z(SpecRr)

where [Spec ÔXtri(ρv)δ,(r,δ)] := 0 if (r, δ) /∈ Xtri(ρv) and mδ,Π is the multiplicity (possibly
0) of Π in the locally Qp-analytic principal series representation obtained by inducing the
character δ (suitably normalized).

We now sketch the proof of Theorem 1.3 (see §5.3). The key idea is to define another
set of cycles [L(w′)] on the patched eigenvariety Xp(ρ) that satisfy the same multiplicity
formula as in Theorem 1.8 and such that:

[L(w′)] 6= 0⇐⇒ HomG(F+⊗QQp)(Πw′ ,Πan
∞[mρ]) 6= 0,
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where the Πw′ are the locally analytic principal series representations that conjecturally
occur in Ŝ(Up, L)an

mS [mρ].
Roughly, the uniqueness assertion in Theorem 1.8 then should force these cycles to

agree with the cycles Cr,Πw′ which then will imply Theorem 1.3. Unfortunately we can
not directly conclude like this, as the cycles [L(w′)] are defined on a space Xp(ρ) that
is only known to be a union of irreducible components of Xtri(ρ) (or rather of Xρp ×∏
v|pXtri(ρv)×Ug). As this problem causes the proof of Theorem 1.3 to be a bit involved,

we sketch here some of the main inputs in more detail for the convenience of the reader.
Fix ρ as in Theorem 1.3. For each x = (ρ, δ) ∈ Y (Up, ρ) ↪→ Xp(ρ) (generic crystalline)

strictly dominant and each w′ � wx write xw′ = (ρ, δw′) and let Πw′ be the (irreducible)
socle of the locally Qp-analytic principal series obtained by inducing δw′ (suitably nor-
malized).

Fixing x, we hence need to prove that HomG(F+⊗QQp)(Πw′ ,Πan
∞[mρ]) 6= 0 for wx � w′.

Since x = xw0 is known to be classical by Theorem 1.1, we already have:
HomG(F+⊗QQp)(Πw0 ,Πan

∞[mρ]) 6= 0
(note that Πw0 is the unique locally Qp-algebraic constituent among the Πw′).

Denote by Xp(ρ)wt(δ) the fiber of Xp(ρ) over the weight wt(δ) of δ seen as an element of
the Lie algebra of the torus of G(F+⊗QQp) and let X∞ := Xρp×Xρp×U

g where Xρp is the
rigid analytic generic fiber of the framed deformation space of ρ at the places of Sp, then
we have a closed immersion Spec ÔXp(ρ)wt(δ),x ↪→ Spec ÔX∞,ρ similar to the one above with
Xtri(ρv)δ. For any ÔXp(ρ)wt(δ),x-moduleM of finite type, we define [M] ∈ Z(Spec ÔX∞,ρ)
as in (1.1) but summing over the minimal prime ideals p of ÔXp(ρ)wt(δ),x and replacing
m(p, A) by the length of the (ÔXp(ρ)wt(δ),x)p-moduleMp. Recall that there is a coherent
Cohen-Macaulay sheafM∞ on Xp(ρ) ([17, Lem.3.8]). Taking its pull-back M̂∞,wt(δ),x on
Spec ÔXp(ρ)wt(δ),x, we first prove that we have a formula in Z(Spec ÔX∞,ρ):

(1.2) [M̂∞,wt(δ),x] =
∑

wx�w′
P1,w0w′(1)[L(w′)]

where Px,y for x, y ∈ ∏v|p S [F+
v :Qp]

n are the Kazhdan-Lusztig polynomials and L(w′) are
certain finite type ÔXp(ρ)wt(δ),x-modules such that:

L(w′) 6= 0⇐⇒ HomG(F+⊗QQp)(Πw′ ,Πan
∞[mρ]) 6= 0.

Formula (1.2) essentially comes from representation theory (in particular the structure
of Verma modules) and doesn’t use Theorem 1.5. By an argument analogous to the one
for Theorem 1.8 (using Theorem 1.5), we have nonzero codimension [F+ : Q]n(n+1)

2 -cycles
C(w′) in Z(Spec ÔX∞,ρ) such that:

(1.3) [ÔXp(ρ)wt(δ),x] =
∑

wx�w′
P1,w0w′(1)C(w′).

Moreover we know that the cycle C(w0) is irreducible and that [L(w0)] ∈ Z≥0C(w0)
(roughly because the support of the locally Qp-algebraic vectors lies in the locus of
crystalline deformations). Consequently we can deduce Theorem 1.3 from the fact that
P1,w0w′(1) 6= 0, if we know that C(w′) is contained in the support of L(w′) for wx � w′.

We prove this last assertion by a descending induction on the length of the Weyl group
element wx. Assume first that lg(wx) = lg(w0) − 1. In that case x is smooth on Xp(ρ)
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and thenM∞ is locally free at x. Hence M̂∞,wt(δ),x ' ÔrXp(ρ)wt(δ),x
for some r > 0 and we

can combine (1.3) (multiplied by the integer r) with (1.2). Using C(w0) 6= 0, C(wx) 6= 0
and [L(w0)] ∈ Z≥0C(w0), it is then not difficult to deduce [L(wx)] 6= 0, hence L(wx) 6= 0
and then HomG(F+⊗QQp)(Πwx ,Πan

∞[mρ]) 6= 0 and xwx ∈ Y (Up, ρ).
By a Zariski-density argument analogous to the one in the proof of Theorem 1.7, we

can then deduce [L(w′)] 6= 0 for any w′ � wx such that lg(w′) ≥ lg(w0) − 1 and any
wx such that lg(wx) ≤ lg(w0) − 1. In particular we have the companion points xw′ on
Y (Up, ρ) for w′ � wx and lg(w′) = lg(w0)− 1 and formulas analogous to (1.2) and (1.3)
localizing and completing at xw′ instead of x = xw0 .

Assume now lg(wx) = lg(w0) − 2, we can repeat the argument of the case lg(wx) =
lg(w0) − 1 but using the analogues of (1.2), (1.3) at xw′ = (ρ, δw′) for w′ � wx and
lg(w′) = lg(w0) − 1 = lg(wx) + 1. The results on the local geometry of the trianguline
variety imply that Xp(ρ) is smooth at the points xw′ with lg(w′) ≥ lg(w0)− 1 and hence:

M̂∞,wt(δw′ ),xw′ ' Ô
r
Xp(ρ)wt(δw′ )

,xw′

with r in fact being the same integer for all the w′ (including x = xw0). Combining
equations (1.2), (1.3) for the points xw′ with lg(w′) ≥ lg(w0) − 1 we can deduce that
[L(wx)] 6= 0. Moreover, by a Zariski-density argument [L(w′)] 6= 0 for w′ � wx such that
lg(w′) ≥ lg(w0) − 2 and wx such that lg(wx) ≤ lg(w0) − 2. By a decreasing induction
on lg(wx), we finally obtain (using a very similar argument) all predicted companion
constituents.

Finally, once we have Theorem 1.3, in particular once we have the companion point
xwx of x in Y (Up, ρ), the argument of the proof of [17, Cor.5.18] can go through mutatis
mutandis and yields that the tangent space of Xp(ρ) at x has dimension strictly larger
than dimXp(ρ) under the assumption on wx in Theorem 1.2 (in loc.cit. we assumed the
crystalline modularity conjectures essentially because they guaranteed the existence of
xwx on Y (Up, ρ) by [16, Prop.3.27]).
Notations: We finish this introduction with the main notation.

If K and L are two finite extensions of Qp, we say that L splits K when Hom(K,L)
(= homomorphisms of Qp-algebras K → L) has cardinality [K : Qp] and we then set
Σ := Hom(K,L) = {τ : K ↪→ L}. If L is any finite extension of Qp we denote by OL its
ring of integers, by kL its residue field and by CL the category of local artinian L-algebra
with residue field isomorphic to L. If A is a (commutative) local ring, we let mA be its
maximal ideal.

For K a finite extension of Qp, we write K0 ⊆ K for the maximal unramified extension
in K, K for an algebraic closure of K and we set |x|K := q−eval(x) for x ∈ K where
q := pf , f := [K0 : Qp], e := [K : K0] and val is normalized by val(p) = 1. We
set Kn := K(µpn) ⊂ K for n ≥ 1, K∞ := ∪nKn, C the completion of K for | · |K ,
GK := Gal(K/K) and ΓK := Gal(K∞/K). We denote by ε : GK � ΓK → Z×p the p-adic
cyclotomic character. We let recK : K× → Gab

K be the reciprocity map normalized so
that a uniformizer of K is sent to a geometric Frobenius and we still write ε for ε◦recK (a
character of K×). Recall that ε = NK/Qp|NK/Qp |Qp where NK/Qp is the norm. If a ∈ L×
(where L is any extension of K) we denote by unr(a) the unramified character of K×
sending a uniformizer of K to a (so | · |K = unr(q−1)). When unr(a) extends to Gab

K via
recK , we still write unr(a) for the induced character of GK and Gab

K .
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If A is an affinoid L-algebra, for example an object of CL, and δ : K× → A× a
continuous - or equivalently locally Qp-analytic - character, the weight of δ is by definition
the Qp-linear morphism wt(δ) : K → A, x 7→ d

dt
δ(exp(tx))|t=0. We can also see wt(δ)

either as an A-linear map A⊗QpK → A, or as an A⊗QpK-linear map A⊗QpK → A⊗QpK,
that is as (the multiplication by) an element of A⊗QpK (we recover the previous point of
view by composing with the A-linear trace map A⊗QpK → A). Alternatively, if L splits
K, we can write A⊗Qp K = A⊗L (L⊗Qp K) ∼→ ⊕τ∈ΣA and see wt(δ) : A⊗Qp K → A as
(wtτ (δ))τ∈Σ ∈ ⊕τ∈ΣA ' A⊗QpK where wtτ (δ) := wt(δ)(1τ ) ∈ A, 1τ ∈ A⊗QpK ' ⊕τ∈ΣA
being 1 on the τ -component and 0 elsewhere.

If A is an affinoid algebra, we write RA,K for the Robba ring associated to K with
A-coefficients (see [45, Def.6.2.1] though our notation is slightly different) and RK when
A = Qp. Given a continuous character δ : K× → A× we write RA,K(δ) for the rank one
(ϕ,ΓK)-module on SpA defined by δ, see [45, Cons.6.2.4].

If X is a scheme locally of finite type over a field L or a rigid analytic space over L, we
denote by Xred the associated reduced Zariski-closed subspace (with the same underlying
set). If x is a point ofX, we let k(x) be the residue field of x, OX,x the local ring at x, ÔX,x
its mOX,x-adic completion and X̂x the affine formal scheme Spf ÔX,x (so the underlying
topological space of X̂x is just a point). We will often (tacitly) use the following: assume
L is of characteristic 0 and x is a closed point of X, then seeing x as a closed point of
Xk(x) := X×Lk(x) one has ÔX,x ∼−→ ÔXk(x),x, in particular ÔX,x is a noetherian complete
local k(x)-algebra of residue field k(x).

If A is an excellent local ring (e.g. A = OX,x where X is a scheme locally of finite type
over a field or a rigid analytic variety) and Â its mA-adic completion, we will (sometimes
tacitly) use the following equivalences: A is reduced if and only if Â is ([37, Sch.7.8.3(v)]),
A is equidimensional if and only if Â is ([37, Sch.7.8.3(x)]), A is Cohen-Macaulay if and
only if Â is ([36, Prop.16.5.2]), A is normal if and only if Â is ([37, Sch.7.8.3(v)]). Moreover
the map Spec Â −→ SpecA sends surjectively minimal prime ideals of Â to minimal prime
ideals of A (as it is a faithfully flat morphism).

If g is a Lie algebra over a field k, we still denote by g the k-scheme defined by
A 7→ g(A) = A⊗k g for A a k-algebra. We denote by k[ε] := k[Y ]/(Y 2) the dual numbers.
If G is a group scheme and A is a ring, we denote by RepA(G) the full subcategory of
the category of GA-modules ([42, §I.2.7]) whose objects are finite free A-modules. If V is
an A-module and I ⊆ A an ideal, we denote by V [I] ⊆ V the A-submodule of elements
of V cancelled by all the elements of I.

2. The geometry of some schemes related to the Springer resolution

We recall, and sometimes improve, several results of geometric representation theory
concerning varieties related to Grothendieck’s and Springer’s resolution of singularities,
in particular we prove a new normality result (Theorem 2.3.6). All these results will be
crucially used in §3 to describe the local rings of the trianguline variety at certain points.

2.1. Preliminaries. We recall the definition of a certain scheme X associated to a split
reductive group G and related to Grothendieck’s simultaneous resolution of singularities.

We fix G a split reductive group over a field k. We assume that the characteristic of k is
good for G, i.e. char(k) = 0 or char(k) > h! where h is the Coxeter number of G (though,
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for applications, we will only need the case char(k) = 0). We fix B ⊂ G a Borel subgroup
and denote by T ⊂ B a maximal torus and by U ⊂ B the unipotent radical of B. We
write W = NG(T )/T for the Weyl group of (G, T ) and w0 ∈ W for the longest element.
We denote by lg(−) the length function on W and by � the Bruhat order. We write g,
b, t and u for the Lie algebra (over k) of respectively G, B, T and U and we denote by
Ad : G → Aut(g) the adjoint representation. Finally we write w · λ := w(λ + ρ) − ρ for
the usual dot action of W on X∗(T ), where ρ denotes half the sum of the positive roots
with respect to B.

We equip the product G/B × G/B = G/B ×k G/B with an action of G by diagonal
left multiplication. Let w ∈ W and ẇ ∈ NG(T ) ⊂ G(k) some lift of w. Write:

Uw := G(1, ẇ)B×B ⊂ G/B ×G/B

Then G/B ×G/B = qw∈WUw. It is well known that Uw (a G-equivariant Schubert cell)
is a locally closed subscheme, smooth of dimension dimG− dimB + lg(w).

Let g̃ be the k-scheme defined by:
(2.1) g̃ := {(gB, ψ) ∈ G/B × g | Ad(g−1)ψ ∈ b} ⊆ G/B × g.

It has dimension dimG = dim g and we have a canonical isomorphism of k-schemes:
(2.2) G×B b

∼−→ g̃, (g, ψ) 7−→ (gB,Ad(g)ψ)
where G ×B b is the quotient of G × b for the right action of B defined by (g, ψ)b :=
(gb,Ad(b−1)ψ). We deduce from (2.2) that the morphism g̃ −→ G/B, (gB, ψ) 7−→ gB
makes g̃ a vector bundle overG/B. In particular the k-scheme g̃ is smooth and irreducible.

Given a vector bundle over a scheme and its corresponding locally free module of finite
type, recall that a subvector bundle corresponds to a locally free submodule which is
locally a direct factor, or equivalently such that the quotient by this submodule is still
locally free. Using the isomorphism G ×B g

∼−→ G/B × g, (g, ψ) 7−→ (gB,Ad(g)ψ), we
easily see from (2.2) that g̃ is a subvector bundle of the trivial vector bundle G/B × g
over G/B.

Now recall Grothendieck’s simultaneous resolution of singularities:
q : g̃ −→ g, (gB, ψ) 7−→ ψ

or equivalently G×B b −→ g, (g, ψ) 7−→ Ad(g)ψ. Recall that ψ ∈ g is called regular if its
orbit under the adjoint representation of G has the maximal possible dimension. Let us
write greg (resp. greg−ss) for the open k-subscheme of g consisting of the regular (resp. the
regular semi-simple) elements. Similarly, we will write treg ⊂ t for the open k-subscheme
of regular elements in the Lie algebra of the torus T .

Proposition 2.1.1. (i) The morphism q is proper and surjective.
(ii) The restriction of q to q−1(greg) is quasi-finite.
(iii) The restriction of q to q−1(greg−ss) is étale of degree |W |.

Proof. For (i) and (ii) see for example [46, Th.8.3(3) & Th.8.3(4)] and its proof. For (iii)
see [46, Th.9.1]. See also [58, §II.4.7]. �

In the following we will sometimes use the notation g̃reg and g̃reg−ss instead of q−1(greg)
and q−1(greg−ss). We finally define the most important k-scheme for us:
(2.3) X := g̃×g g̃ = {(g1B, g2B,ψ) ∈ G/B ×G/B × g |Ad(g−1

1 )ψ ∈ b,Ad(g−1
2 )ψ ∈ b}
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where the fiber product is with the map q. If we want to specify the base field k, we
sometimes write Xk instead of X.

2.2. Analysis of the global geometry. We describe the global geometry of the scheme
X. Most results in this section are fairly well known, but we include proofs in order to
fix notation and for the convenience of the reader.

Let us write:
(2.4) π : X ↪→ G/B ×G/B × g � G/B ×G/B
for the projection to G/B ×G/B. We write κi : X −→ t, i ∈ {1, 2}, for the morphism:

(2.5) (g1B, g2B,ψ) 7−→ Ad(g−1
i )ψ ∈ b/u = t

where ψ denotes the image of ψ ∈ b under the canonical projection b � t. For w ∈ W
let Vw := π−1(Uw) ⊂ X.

Proposition 2.2.1. The projection Vw −→ Uw induced by π is a geometric vector bundle
of relative dimension dimB − lg(w).

Proof. We consider the trivial vector bundle:
G/B ×G/B × g −→ G/B ×G/B.

This vector bundle contains the two subvector bundles:
Y1 := {(g1B, g2B,ψ) ∈ G/B ×G/B × g |Ad(g−1

1 )ψ ∈ b}
Y2 := {(g1B, g2B,ψ) ∈ G/B ×G/B × g |Ad(g−1

2 )ψ ∈ b}
(Yi are subvector bundles of G/B × G/B × g for the same reason that g̃ is a subvector
bundle of G/B×g, see §2.1). By definition X = g̃×g g̃ is the scheme theoretic intersection
of the two subvector bundles Y1 and Y2 inside G/B ×G/B × g. By Lemma 2.2.2 below,
it is enough to show that for a given point y = (gB, gẇB) ∈ Uw ⊂ G/B × G/B the
dimension of π−1(y) only depends on w ∈ W . We prove this last fact. The two conditions
Ad(g−1)ψ ∈ b,Ad(ẇ−1g−1)ψ ∈ b translate into:
(2.6) Ad(g−1)ψ ∈ b ∩ Ad(ẇ)b ' t⊕ (u ∩ Ad(ẇ)u),
or in other words:
(2.7) π−1(y) = y × Ad(g)

(
t⊕ (u ∩ Ad(ẇ)u)

)
⊆ Uw × g

which is an affine space of dimension dimB − lg(w). �

Lemma 2.2.2. Let V −→ Y be a geometric vector bundle over a reduced scheme Y
which is locally of finite type over a field, and W1, W2 ⊆ V subvector bundles. Assume
that for all closed points y ∈ Y the intersection of the fibers W1,y ∩W2,y in Vy (where
∗y := ∗ ×Y Spec k(y)) is an affine space of constant dimension r over k(y). Then the
scheme theoretic intersection W1 ∩W2 ⊂ V is a geometric vector bundle of rank r.

Proof. Let us write V , W1 and W2 for the corresponding locally free sheaves on Y and
recall that V/W2 is also locally free. We consider the morphism given by the composition:

α :W1 −→ V � V/W2.

The coherent sheaf coker(α) is again locally free on Y : indeed by assumption for all closed
points y ∈ Y the dimension of coker(α)y is given by rkV − rkW1 − rkW2 + r, and the
assumptions on Y imply that a coherent sheaf of fiberwise constant rank is locally free.
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This last fact follows from the following classical statement: let A be a reduced noetherian
Jacobson ring and M a finite type A-module such that dimA/mM/mM is constant for
all maximal ideals m of A, then M is a locally free A-module (which is a consequence
of Nakayama’s Lemma and of the fact that the intersection of the maximal ideals of a
reduced Jacobson ring is 0).

Now consider the sheaf W3 := kerα. Then the sequence:

0 −→W3 −→W1 −→ V/W2 −→ cokerα −→ 0

is exact and all sheaves butW3 are known to be locally free. It follows thatW3 is locally
free as well. It is easily checked that the geometric vector bundle associated with W3
equals the intersection W1 ∩W2. �

Definition 2.2.3. For w ∈ W , let Xw be the closed subset of X defined as the Zariski-
closure of Vw in X.

If we want to specify the base field k, we sometimes write Xw,k ⊂ Xk instead of
Xw ⊂ X.

Lemma 2.2.4. Let w,w′ ∈ W , then Xw ∩ Vw′ 6= ∅ implies w′ � w.

Proof. We first claim that π(Xw) is the Zariski-closure Uw of the Schubert cell Uw in
G/B × G/B. Indeed Vw = π−1(Uw) ⊆ π−1(Uw) implies Xw = Vw ⊆ π−1(Uw) and
hence π(Xw) ⊆ Uw. Conversely we have Uw × {0} ⊆ Vw ⊆ G/B × G/B × g and hence
Uw × {0} ⊆ Vw = Xw which implies Uw ⊆ π(Xw). Since π(Vw′) = Uw′ we then have:

Xw ∩ Vw′ 6= ∅ ⇒ π(Xw) ∩ π(Vw′) 6= ∅ ⇒ Uw ∩ Uw′ 6= ∅ ⇒ w′ � w

the last implication being the well known closure relations for Schubert varieties. �

Proposition 2.2.5. The scheme X is locally a complete intersection and its irreducible
components are given by the Xw for w ∈ W . In particular X is Cohen-Macaulay and
dimX = dimXw = dim g = dimG. .

Proof. It is obvious that the Xw cover X (set-theoretically). By Lemma 2.2.1 and the
irreducibility of the Uw, the Vw are irreducible. Moreover, the dimension of Xw equals
the dimension of Vw which is equal to dimUw + dimB− lg(w) = dimG = dimX. As the
Vw are pairwise disjoint is also follows that none of the Xw is contained in another one
for dimension reasons. We deduce that the Xw are the irreducible components of X.

The scheme X ⊆ G/B × G/B × g is hence equidimensional (of dimension dimG)
and cut out by 2 dim u equations in the smooth scheme G/B × G/B × g. As 2 dim u =
dim(G/B ×G/B × g)− dimX, it is a local complete intersection. �

Let us write:
Ṽw := Xw\

⋃
w′ 6=w

Xw′ = X\
⋃
w′ 6=w

Xw′ ⊆ Vw.

Then Ṽw is an open subset of X and hence it has a canonical structure of an open
subscheme. Moreover Xw is still the Zariski-closure of Ṽw in X. We define a scheme
structure on Xw by defining Xw to be the scheme theoretic image of Ṽw in X.

For i ∈ {1, 2} we define pri : X = g̃×g g̃ −→ g̃, (g1B, g2B,ψ) 7−→ (giB,ψ).
12



Theorem 2.2.6. (i) The scheme X is reduced. In particular the irreducible components
Xw (with their scheme structure) are reduced.
(ii) For i ∈ {1, 2} the projection pri : X −→ g̃ induces a proper and birational morphism
pri,w : Xw −→ g̃ which is an isomorphism above g̃reg = q−1(greg) ⊆ g̃.

Proof. (i) The scheme X is Cohen-Macaulay and hence it is reduced if it is generically
reduced, see [37, Prop.5.8.5]. We prove that X is generically smooth, i.e. that each
irreducible component Xw contains a point at which X is smooth. Indeed, by (iii) of
Proposition 2.1.1 the morphism pr1 : X −→ g̃ is étale of degree |W | over g̃reg−ss, as it is
the base change of the morphism g̃reg−ss = greg−ss×g g̃ −→ greg−ss (along itself). It is hence
enough to show that there exists a point x ∈ g̃reg−ss such that each of the |W | components
Xw of X contains a pre-image of x. However, by (2.6), any point x = (gB, ψ) ∈ g̃ with
Ad(g−1)ψ ∈ treg has the property that Vw contains a preimage of x for any w ∈ W .
Moreover, we have the following consequence: let xw ∈ Vw be such a preimage of x
(which is in fact unique), then pr1 is étale of degree 1 at xw. Finally the open subscheme
Ṽw ⊂ X is reduced as X is. Hence the same is true for the scheme theoretic image Xw

of Ṽw in X. Note that since Vw is reduced by Proposition 2.2.1, Xw is also the scheme
theoretic image of Vw in X.
(ii) The morphism pr1,w is certainly proper since it is the composition of a closed im-
mersion and the proper morphism pr1 (the latter following by base change from (i) of
Proposition 2.1.1). Moreover, we have seen in (i) that Xw contains a point xw such that
pr1,w is étale of degree 1 at xw. Since both schemes Xw and g̃ are irreducible, it follows
that pr1,w is birational. On the other hand base change from (ii) of Proposition 2.1.1
implies that pr1, and hence also pr1,w, is quasi-finite above g̃reg. By [38, Th.8.11.1] it
follows that the morphism:

pr1,w : pr−1
1,w(g̃reg) −→ g̃reg

is then finite, being both quasi-finite and proper. Since it is also birational and g̃reg is
normal, then it is an isomorphism by [38, Lem.8.12.10.1]. The claim for pr2 is proven
along the same lines. �

2.3. Analysis of the local geometry. We give an analysis of the local geometry of the
irreducible components Xw of the scheme X. In particular we prove the new result that
they are normal.

We denote by κi,w the restriction to Xw ⊂ X of the morphisms κi : X → t defined in
(2.5).

Lemma 2.3.1. For i ∈ {1, 2} the fibers of the morphisms κi and κi,w are equidimensional
of dimension dimG− dimT .

Proof. We prove the claim for κ1, the proof for the other cases being strictly analogous.
Note first that the scalar multiplication:
(2.8) λ · (g1B, g2B,ψ) = (g1B, g2B, λψ) and λ · t = λt

defines an action of the multiplicative group Gm on X ⊂ G/B ×G/B × g and on t such
that the morphism κ1 is Gm-equivariant. Moreover, it is important to observe that if ψ
is a point of g, the orbit map Gm → g deduced from this action extends uniquely to a
map A1 → g. As X is a closed subscheme of G/B ×G/B × g, it is the same for an orbit
map Gm → X and it is clear that such a map sends the point 0 ∈ A1 in κ−1

1 (0).
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As the restriction of κ1 to each irreducible component of X is dominant (even surjective
as follows e.g. from (2.7)), we deduce that for t ∈ t each irreducible component of κ−1

1 (t)
has dimension at least dimG − dim t = dimG − dimT , see e.g. [38, Lem.13.1.1]. Let
E ⊂ X denote the set of points x ∈ X such that there is a component of κ−1

1 (κ1(x))
containing x and of dimension strictly larger than dimG− dimT . By [38, Th.3.1.3] the
subset E is closed and we claim that E = ∅. Assume this is not the case and choose a
point x ∈ E. The set E is invariant under the action (2.8) of Gm as κ1 is Gm-equivariant.
Let A1 → X be the unique extension of the orbit map associated to x. As E is Gm-
invariant and closed, this map factors through E. From (2.8), we deduce that E contains
a point x′ such that x′ ∈ κ−1

1 (0). As x′ ∈ E it is enough to show that κ−1
1 (κ1(x′)) = κ−1

1 (0)
is equidimensional of dimension dimG− dimT , which will then be a contradiction.

We are thus reduced to prove that (the reduced subscheme underlying):
κ−1

1 (0) = {(g1B, g2B,ψ) ∈ G/B ×G/B × g |Ad(g−1
1 )ψ ∈ u,Ad(g−1

2 ) ∈ u}
is equidimensional of dimension dimG − dimT . However, the same argument as in
Proposition 2.2.1 (see (2.6)) yields that:

π−1(Uw) ∩ κ−1
1 (0) = (π−1(Uw)×X κ−1

1 (0))red −→ Uw

is a geometric vector bundle with characteristic fiber u ∩ Ad(w)u. And hence κ−1
1 (0))

is a finite union of locally closed subsets of dimension dim(G) − dim(T ) (see also the
beginning of §2.4 below). �

We recall a criterion for flatness often referred to as miracle flatness.

Lemma 2.3.2. Let f : Y → Z be a morphism of noetherian schemes and assume that Z
is regular and Y is Cohen-Macaulay. Assume that the fibers of f are equidimensional of
dimension dim Y − dimZ. Then f is flat.

Proof. Let y ∈ Y map to z ∈ Z and let R (resp. S) denote the local rings of Z at z
(resp. of Y at y), so S is an R-algebra. By assumption the ring R is regular of dimension,
say, d and the ring S is Cohen-Macaulay. Let f1, . . . , fd ∈ R be a system of generators
of the maximal ideal of R (which exists since R is regular). The assumptions on the
fiber dimension implies that dimS/(f1, . . . , fd)S = dimS − d. As S is Cohen-Macaulay
it follows from [36, Cor.16.5.6] that the sequence f1, . . . , fd is an S-regular sequence.
But as R/(f1, . . . , fd) is a field, the R/(f1, . . . , fd)-algebra S/(f1, . . . , fd)S is flat over
R/(f1, . . . , fd). Hence S is flat over R by [36, Prop.15.1.21] (applied with A = R and
B = M = S). �

Proposition 2.3.3. The schemes Xw are Cohen-Macaulay and the morphisms κi and
κi,w are flat for i ∈ {1, 2}.

Proof. Assume that char(k) > 0. Then the claim that Xw is Cohen-Macaulay is a result
of Bezrukavnikov and Riche, see [9, Th.2.2.1] (where the scheme Xw is called Zw). It is
already mentioned in [9, Rem.2.2.2(2)] that it is possible to lift this result to char(k) = 0,
nevertheless we include some details here. It is enough to prove the claim over any field
of characteristic 0.

Let A := Z(p), then A is a discrete valuation ring with residue field Fp of characteristic
p > h! (recall that h is the Coxeter number of G) and fraction field k = Q. As G is
a Chevalley group there exists a reductive group GA over A and a Borel subgroup BA

over A which are models respectively for G and B. We denote by gA (resp. bA) the Lie
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algebra of GA (resp. BA) considered as A-scheme. We define a model XA of Xk over A
as the closed subscheme (see also [9, §2.1]):

{(g1BA, g2BA, ψ) ∈ GA/BA ×GA/BA × gA |Ad(g−1
1 )ψ ∈ bA,Ad(g−1

2 )ψ ∈ bA}

of GA/BA × GA/BA × gA and we let πA : XA −→ GA/BA × GA/BA be the canonical
projection. Finally we denote by UA,w ⊂ GA/BA × GA/BA the Schubert cell defined by
the GA-orbit of (1, ẇ) ∈ GA/BA ×GA/BA for w ∈ W .

The same argument as in Proposition 2.2.1 shows that π−1
A (UA,w) −→ UA,w is a vector

bundle. We write XA,w for the scheme theoretic image of π−1
A (UA,w) in XA, which is

also the scheme theoretic image of π−1
A (Uk,w) in XA. It is easy to deduce that XA,w is

flat over SpecA and that the generic fiber of XA,w is identified with Xk,w. Moreover [9,
Rem.2.11.1] asserts that (recall our schemes Xw are denoted Zw in loc.cit.):

XA,w ×SpecA SpecFp = XFp,w.

By [36, Prop.16.5.5] it follows that the A-flat scheme XA,w is Cohen-Macaulay as its
special fiber XFp,w is. It then follows e.g. from [27, Prop.18.8] that the generic fiber Xk,w

is Cohen-Macaulay as well.
Finally, we deduce from Lemma 2.3.2 that κi,w is flat for i ∈ {1, 2} using the fact that

Xw is Cohen-Macaulay and that κi,w has equidimensional fibers by Lemma 2.3.1. The
proof for κi is the same using Proposition 2.2.5. �

We now state two lemmas which will be used in the main result, Theorem 2.3.6 below.
For simplicity we now write w instead of ẇ.

We first compare the maps κ1 and κ2 using the decomposition of G/B × G/B into
Bruhat cells. Recall that t/W := Spec(RW

t ) where Rt is the affine ring of t.

Lemma 2.3.4. Let w ∈ W , then κ2,w = Ad(w−1) ◦ κ1,w, where Ad(w) : t −→ t is the
morphism induced by the adjoint action of W on t. In particular the diagram:

(2.9)
Xw

κ1,w //

κ2,w

��

t

��
t // t/W

where the two morphisms t −→ t/W are both the canonical projection, commutes.

Proof. It is enough to show that the equality κ2,w = Ad(w−1)◦κ1,w holds on Vw = π−1(Uw)
as Vw is dense in Xw and t is affine hence separated. Let x ∈ π−1(Uw)(S) be an S-valued
point. After replacing S by some fppf cover, we may assume that there exists some
g ∈ G(S) such that x = (gB, gwB, ψ) with ψ ∈ g(S). Then we have in g(S):

Ad((gw)−1)ψ = Ad(w−1) Ad(g−1)ψ.

The claim follows from the remark that the image of the left hand side in t(S) is by
definition κ2(x) while the image of the right hand side equals Ad(w−1)κ1(x). �

Given w ∈ W we denote by tw ⊂ t the closed subscheme defined as the fixed point
scheme of Ad(w) : t → t. It is clear that tw is smooth and irreducible (and in fact
isomorphic to an affine space over k).
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Lemma 2.3.5. Consider the morphism for i ∈ {1, 2} (see (2.4) and (2.5)):
(π, κi) : X −→ G/B ×G/B × t.

Then the restriction of (π, κi) to Vw induces a smooth map:
fi : Vw −→ Uw × t.

with irreducible fibers. In particular Vw ∩κ−1
i (tw′) = (Vw×X κ−1

i (tw′))red is irreducible for
i ∈ {1, 2} and all w,w′ ∈ W .

Proof. It is enough to prove the statement for i = 1. We deduce from (2.7) that for x =
(gB, gwB, t) ∈ Uw×t the fiber f−1

1 (x) is isomorphic to the affine space t+(u∩Ad(w)u) ⊂ b,
hence in particular is smooth and irreducible of dimension only depending on w. It now
follows from Lemma 2.3.2 that f1 is a flat morphism (note that both Uw × t and Vw
are smooth using Proposition 2.2.1 for the latter). On the other hand a flat morphism
of algebraic varieties over a field is smooth if it has smooth fibers, see e.g. [39, §III
Th.10.2]. It follows that f1 is smooth and has irreducible fibers. It remains to show that
Vw∩κ−1

1 (tw′) is irreducible. We have Vw∩κ−1
1 (tw′) = f−1

1 (Uw× tw
′) and f−1

1 (Uw× tw
′) will

be irreducible if it is connected since f1 is smooth and Uw × tw
′ is smooth. Let us prove

that f−1
1 (Uw× tw

′) is connected. Consider two disjoint open subsets A,B ⊂ f−1
1 (Uw× tw

′)
that cover f−1

1 (Uw× tw
′). As f1 is smooth, it is flat, hence open and f1(A) and f1(B) are

two open subsets of Uw× tw
′ . If their intersection is nonempty, there is x ∈ Uw× tw

′ such
that f−1

1 (x) is not connected, which contradicts the irreducibility of the fibers. Hence
f1(A) and f1(B) are disjoint. But the connectedness of Uw × tw

′ implies that either
f1(A) or f1(B), and hence either A or B, is empty, which proves that f−1

1 (Uw × tw
′) is

connected. �

We now prove the main result of this section. We recall that we have defined various
maps: π|Xw : Xw −→ G/B×G/B (surjective onto Uw), pri,w = pri|Xw : Xw −→ g̃ (proper
birational surjective) and κi,w = κi|Xw : Xw −→ t (flat equidimensional surjective) where
κi is the composition of pri with κ : g̃ −→ t, (gB, ψ) 7−→ Ad(g−1)ψ.

Theorem 2.3.6. The schemes Xw are normal.

Proof. As Xw is Cohen-Macaulay it remains to show by Serre’s criterion ([37, Th.5.8.6])
that Xw is smooth in codimension 1. Both Vw and pr−1

1,w(g̃reg) are smooth open subsets
of Xw: the first one by Proposition 2.2.1 and π(Xw) = Uw (see the proof of Proposition
2.2.4), the second one by (ii) of Theorem 2.2.6 and the smoothness of g̃reg (which is an
open subset of the smooth scheme g̃). Hence it is enough to show that the complement of
the smooth open subscheme Vw ∪ pr−1

1,w(g̃reg) in Xw is of codimension strictly larger than
1.

Let C be an irreducible component of the closed subset Xw\Vw of Xw such that C has
codimension 1 in Xw. It is enough to show that C can’t be contained in the (smaller)
closed subset Xw\(Vw ∪ pr−1

1,w(g̃reg)). As C is covered by the finitely many locally closed
subsets C ∩ Vw′ for w′ 6= w, we easily deduce that there exists some w′ such that C ′ :=
C ∩ Vw′ is Zariski-open dense in C. It is enough to show that C ′ contains points of
pr−1

1,w(g̃reg), i.e. that C ′ contains points (g1B, g2B,ψ) with ψ ∈ greg. Note that since C is
irreducible so is its open subset C ′.

Let x = (g1B, g2B,ψ) ∈ C ′ ⊆ Xw ∩Xw′ , by Lemma 2.3.4 we have:
(2.10) κ2(x) = Ad(w−1)κ1(x) = Ad(w′−1)κ1(x).
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It follows that κ1(C ′) ⊂ tw̃ where w̃ := ww′−1 ∈ W , hence C ′ ⊆ Vw′ ∩κ−1
1 (tw̃). As w 6= w′

we find that tw̃ 6= t and hence tw̃ ⊂ t is a closed subset of codimension at least 1. By
Lemma 2.3.5 the map κ1,w′ : Vw′ −→ t is smooth, hence the preimage Vw′ ∩ κ−1

1 (tw̃) of
tw̃ ⊂ t in Vw′ has codimension in Vw′ equal to the codimension of tw̃ in t. As C has
codimension 1 in Xw we have:

dimC ′ = dimC ∩ Vw′ = dimC = dimXw − 1 = dimVw − 1 = dim Vw′ − 1

and it follows from C ′ ⊆ Vw′ ∩κ−1
1 (tw̃) that Vw′ ∩κ−1

1 (tw̃) has codimension ≤ 1 in Vw′ . We
thus see that tw̃ ⊂ t must have codimension exactly 1 in t, and that Vw′ ∩ κ−1

1 (tw̃) must
also have codimension 1 in Vw′ .

We claim that C ′ = Vw′∩κ−1
1 (tw̃). Indeed, Vw′∩κ−1

1 (tw̃) is Zariski-closed of codimension
1 in Vw′ and is irreducible by the last assertion in Lemma 2.3.5. On the other hand it
contains the closed subset C ′ = C ∩ Vw′ of Vw′ which is also of codimension 1 in Vw′ .
Hence these two closed subsets of Vw′ are the same.

As tw̃ ⊂ t has codimension 1, it follows that w̃ = sα where sα is the reflection associated
to a positive root α. But ∅ 6= C ′ ⊆ Xw ∩ Vw′ implies w′ � w = sαw

′ by Lemma
2.2.4, hence lg(w′) < lg(sαw′) and [41, §0.3(4)] implies that w′−1α is a positive root.
Equivalently the root α is positive with respect to the Borel subgroup w′Bw′−1, i.e. we
have gα ⊆ b ∩ Ad(w′)b where gα ⊆ g is the T -eigenspace of g for the adjoint action
corresponding to the root α. Applying (2.7) with g = 1 yields:

π−1((B,w′B)) = (B,w′B)×(t⊕(u∩Ad(w′)u)) = (B,w′B)×b∩Ad(w′)b ⊃ (B,w′B)×(t⊕gα),

hence we deduce:

C ′ = Vw′ ∩ κ−1
1 (tsα) ⊇ π−1((B,w′B)) ∩ κ−1

1 (tsα) ⊇ (B,w′B)× (tsα ⊕ gα).

The claim then follows as one easily checks that tsα ⊕ gα contains elements in greg. �

We end this section by formulating a general conjecture about the set-theoretic inter-
sections Xw ∩ Vw′ for w,w′ ∈ W .

Conjecture 2.3.7. Let w,w′ ∈ W with w′ � w and w̃ = ww′−1, then we have:

Xw ∩ Vw′ = Vw′ ∩ κ−1
1 (tw̃).

Obviously Lemma 2.3.4 implies that the left hand side is contained in the right hand
side.

2.4. Characteristic cycles. We show that the fibers κ−1
i,w(0) ⊂ Xw are related to Springer’s

resolution and have a rich combinatorial geometric structure that will be used in §4.3.
We now assume char(k) = 0. Let g/G := Spec(RG

g ) where g = SpecRg and note that
the natural map t/W −→ g/G is an isomorphism of smooth affine spaces (see e.g. [40,
(10.1.8)]). We have a canonical morphism κ̄ : X −→ g/G given by the composition of
the canonical map X ' g̃×g g̃ −→ g with the projection g � g/G. Again for w ∈ W we
write κ̄w for the restriction of κ̄ to Xw ⊂ X and point out that κ̄w is the diagonal map in
the commutative diagram (2.9). Note that κ̄w is surjective as all maps in (2.9) are. We
define the following reduced scheme over k:

(2.11) Z := (X ×g/G {0})red = (κ̄−1(0))red ⊂ X.
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The scheme Z is known as the Steinberg variety (see [59]) and we easily check that we
have:

Z ' Ñ ×N Ñ
where N ⊂ g is the nilpotent cone, Ñ := {(gB, ψ) ∈ G/B × N | Ad(g−1)ψ ∈ u} (a
smooth scheme over k) and where q : Ñ −→ N , (gB, ψ) 7−→ ψ is the Springer resolution
of the (singular) scheme N . We also have as in (2.2):
(2.12) G×B u

∼−→ Ñ , (g, ψ) 7−→ (gB,Ad(g)ψ).

We analyze the irreducible components of Z as we did for X in §2.2. For w ∈ W let us
write V ′w := π−1(Uw) ∩ Z (set-theoretic intersection in X) and Zw for the Zariski-closure
of V ′w in Z with its reduced scheme structure.

Proposition 2.4.1. The scheme Z is equidimensional of dimension dimG− dimT and
its irreducible components are given by the Zw for w ∈ W .

Proof. The proof is the same as the proof of the corresponding statements in Proposition
2.2.1 and Proposition 2.2.5. �

Remark 2.4.2. Contrary to the case of the Xw (see Proposition 2.3.3), it doesn’t seem to
be known whether the irreducible components Zw are Cohen-Macaulay. Moreover, even
assuming this, the proof of Theorem 2.3.6 doesn’t extend, and we do not know either if
the Zw are normal.

We write Z0(Z) for the free abelian group generated by the irreducible closed subvari-
eties of codimension 0 in Z, i.e. for the free abelian group on the irreducible components
of Z. For w ∈ W we denote by [Zw] the component Zw viewed in Z0(Z). By Proposition
2.4.1 the [Zw] form a basis of Z0(Z) (which is thus isomorphic to Z[W ]). Given a scheme
Y whose underlying topological space is a union of irreducible components of Z we can
define an associated class:
(2.13) [Y ] :=

∑
w∈W

m(Zw, Y )[Zw] ∈ Z0(Z)

where m(Zw, Y ) is the multiplicity of Zw in Y , i.e. is the length as an OY,ηw-module of
the local ring OY,ηw of Y at the generic point ηw of Zw.

We set X := X ×g/G {0} and for w ∈ W :

Xw := Xw ×g/G {0} = κ̄−1
w (0) = Xw ×X X ⊂ Xw ⊂ X

(note that we do not take the reduced associated schemes). We obviously have Xred
w ⊂ Z.

Moreover, each irreducible component of Xw has dimension at least dimZ = dimXw −
dim g/G by an application of [39, §II Exer.3.22] to the surjective morphism κ̄w : Xw −→
g/G. Hence each irreducible component of Xw has dimension dimZ and is thus some
Zw′ for w′ ∈ W . We are interested in computing the class [Xw] ∈ Z0(Z), but for this we
need some preliminaries.

Let us denote by O the usual BGG-category of representations of U(g), see e.g. [41,
§1.1]. Given a weight µ, i.e. a k-linear morphism t −→ k, let M(µ) := U(g) ⊗U(b) k(µ)
denote the Verma module of (highest) weight µ where U(−) is the enveloping algebra
and k(µ) : U(b) � U(t) ' t

µ−→ k. We know that M(µ) has a unique irreducible
quotient L(µ) (see e.g. [41, §1.2]). Let w ∈ W , then the irreducible constituents of
M(ww0 · 0) = M(−w(ρ) − ρ) = M(w · (−2ρ)) are of the form L(w′w0 · 0) for w′ ∈ W
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and the constituent L(w′w0 · 0) occurs in M(ww0 · 0) with multiplicity Pw0w,w0w′(1), see
e.g. [41, §8.4]. Here Px,y(T ) ∈ Z≥0[T ] is the Kazhdan-Lusztig polynomial associated to
x, y ∈ W . Recall that Px,y 6= 0 if and only if x � y and that Px,x(1) = 1. In particular
L(w′w0 · 0) occurs in M(ww0 · 0) if and only if w0w � w0w

′ if and only if w′ � w (the
last equivalence following from the definition of the Bruhat order, see e.g. [41, §0.4], and
from lg(w0w) = lg(w0)− lg(w), see e.g. [41, §0.3]).

We write O(0) for the full subcategory of O consisting of objects of trivial infinitesimal
character ([41, §1.12]), for instance M(ww0 · 0) and L(ww0 · 0) are in O(0) for w ∈ W .
The Beilinson-Bernstein correspondence defines an exact functor which is an equivalence
of artinian categories:
(2.14) BBG : O(0) ∼−→ D−Modrh

G/B×G/B

to the categoryD−Modrh
G/B×G/B of regular holonomicG-equivariantD-modules onG/B×

G/B (see e.g. [40, §6] and [40, §11]). We write M(ww0 · 0) := BBG(M(ww0 · 0)) and
L(ww0 · 0) := BBG(L(ww0 · 0)) for w ∈ W .

Remark 2.4.3. In fact, in [40, §11] (and in most references on the subject), it is rather
constructed an equivalence BBB : O(0) ∼−→ D−Modrh

G/B to the category of B-equivariant
regular holonomic D-modules on G/B. However, if one embeds G/B into G/B × G/B
via gB 7→ (B, gB), then one can use the left diagonal action of G to extend a regular
holonomic B-equivariant D-module on G/B to a regular holonomic G-equivariant D-
module on G/B × G/B. This yields an equivalence of categories between D−Modrh

G/B

and D−Modrh
G/B×G/B, see [60, Lem.1.4(ii)]. The composition of BBB with this equivalence

gives the functor BBG.

By [23, Prop.3.3.4], the Steinberg variety Z is identified with the union in the cotangent
bundle of G/B ×G/B of the conormal bundles of the diagonal G-orbits of G/B ×G/B.
Recall these diagonal G-orbits are the Uw for w ∈ W (see §2.1), so in particular we have:

T ∗Uw(G/B ×G/B) ⊆ Z ⊆ T ∗(G/B ×G/B)
where T ∗Uw(G/B×G/B) is the conormal bundle of Uw in G/B×G/B and T ∗(G/B×G/B)
is the cotangent bundle of G/B × G/B. In fact, by [23, Prop.3.3.5] the irreducible
component Zw of Z is identified with the Zariski-closure of T ∗Uw(G/B ×G/B) in Z.

To any coherentD-moduleM onG/B×G/B one can associate a coherentOT ∗(G/B×G/B)-
module gr(M) on T ∗(G/B ×G/B) (which depends on the choice of a good filtration on
M). The schematic support of gr(M) defines a closed subscheme Ch(M) of T ∗(G/B ×
G/B) such that each irreducible component of Ch(M) is of dimension greater or equal
than dimZ = dim(G/B × G/B) ([40, Cor.2.3.2]). The closed subscheme Ch(M) still
depends on the choice of good filtration on M however the associated cycle in the group
Z(T ∗(G/B × G/B)) depends only on M (see e.g. [40, p.60]). The following result is
well-known (see e.g. [60, §1.4]).

Proposition 2.4.4. If M is in D−Modrh
G/B×G/B then Ch(M)red ⊆ Z ⊆ T ∗(G/B×G/B).

Proof. We only give a sketch. First, we have an isomorphism of k-schemes:
(2.15) Z

∼−→ G×B q−1(u)red, ((g1, ψ1), (g2, ψ2)) 7−→ (g1, (g−1
1 g2, ψ2))

where we have used (2.12) for Ñ and its subscheme q−1(u)red, and where B acts on
G × q−1(u)red by (h1, (h2, ψ))b := (h1b, (b−1h2, ψ)). Secondly, the k-scheme Ñ can be
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identified with T ∗G/B (see e.g. [40, §10.3]) and if M′ is in D−Modrh
G/B, then we have

Ch(M′)red ⊆ q−1(u)red and not just Ch(M′)red ⊆ Ñ = T ∗G/B (see e.g. [60, §1.3]).
Thirdly, if M is in D−Modrh

G/B×G/B and if M′ is the associated D-module in D−Modrh
G/B

by the equivalence of Remark 2.4.3, then one can check that Ch(M) ' G×B Ch(M′). In
particular Ch(M)red is in Z by (2.15). �

LetM be inD−Modrh
G/B×G/B, then from Proposition 2.4.4 and what is before we deduce

that Ch(M)red is a closed subspace of Z whose underlying topological space is a union of
irreducible components of Z. We set (see (2.13)):

[M] := [Ch(M)] ∈ Z0(Z)
(the so-called characteristic cycle of M) and recall that the map M 7−→ [M] is additive
by [40, Th.2.2.3].
Remark 2.4.5. It was conjectured by Kazhdan and Lusztig in the case G = SLn (and
k = C) that [L(ww0 · 0)] = Zw, equivalently that the characteristic cycles [L(w · 0)] for
w ∈ W are irreducible. It turned out that this is wrong for n ≥ 8 (but true for n ≤ 7),
see [43].
Proposition 2.4.6. For w ∈ W we have [Xw] = [M(ww0 · 0)] in Z0(Z).

Proof. This is [9, Prop.2.13.7], see also [35, (6.2.3)]. �

The following theorem is well known.
Theorem 2.4.7. (i) The three classes:

([Zw])w∈W ,
(
[M(ww0 · 0)]

)
w∈W

and
(
[(L(ww0 · 0)]

)
w∈W

are a basis of the finite free Z-module Z0(Z).
(ii) For w ∈ W we have:

[M(ww0 · 0)] =
∑
w′
Pw0w,w0w′(1)[L(w′w0 · 0)] ∈ Z0(Z).

(iii) There are integers aw,w′ ∈ Z≥0 only depending on w,w′ ∈ W such that:
[L(ww0 · 0)] =

∑
w′
aw,w′ [Zw′ ] ∈ Z0(Z).

Moreover, aw,w = 1 and aw,w′ = 0 unless w′ � w. Finally if w′ � w and Uw′ is contained
in the smooth locus of the closure Uw of Uw in G/B ×G/B, then aw,w′ = 0.

Proof. Using Proposition 2.4.6 we have [M(ww0 · 0)] = [Xw] = ∑
w′ bw,w′ [Zw′ ] for some

bw,w′ ∈ Z≥0. If bw,w′ 6= 0 for some w′ ∈ W , then Zw′ ⊆ X
red
w which implies (Xw∩Vw′)∩Z 6=

∅ since Vw′ ∩ Z ⊆ Zw′ , which implies w′ � w by Lemma 2.2.4. Moreover one easily gets
bww = 1 using that the restriction of κ1,w : Xw −→ t to Vw is smooth by Lemma 2.3.5.
It follows that the matrix (bw,w′)(w,w′)∈W×W is upper triangular with entries 1 on the
diagonal and hence invertible. This implies that ([M(ww0 · 0)])w∈W is a basis of Z0(Z).
(ii) is a direct consequence of the fact L(w′w0 · 0) occurs in M(ww0 · 0) with multiplicity
Pw0w,w0w′(1). As Pw,w′(1) = 0 unless w′ � w and Pw0w,w0w(1) = 1, it follows that the
matrix (Pw0w,w0w′(1))(w,w′)∈W×W is also invertible, and hence that ([L(ww0 · 0)])w∈W is
also a basis of Z0(Z), which finishes (i). The first two statements in (iii) follow from the
fact the matrix (aw,w′)(w,w′)∈W×W is the product of two upper triangular matrices with 1
on the diagonal. The last statement is [60, Lem.1.3(iii)]. �
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By Proposition 2.4.6, (ii) of Theorem 2.4.7 and the fact Pw0w,w0w′(1) 6= 0 if and only if
w′ � w, we see that Xw is in general far from being irreducible as it contains all the Zw′
for w′ � w, possibly even with some higher multiplicities than the Pw0w,w0w′(1).

We end this section with a last result on the cycles [L(ww0 · 0)] for w ∈ W that will
be used in §4.3.

Fix w ∈ W . As in the proof of [54, Lem.3.2], the left action of b on L(ww0 · 0) induced
by that of g comes from an algebraic action of B. Let us write Pw ⊆ G for the largest
parabolic subgroup containing B with Levi subgroup Mw such that ww0 · 0 is dominant
with respect to the Borel subgroup Mw ∩ B of Mw. Note that Pw = G if and only if
w = w0. Then the argument of [54, Lem.3.2] shows that the action of B on L(ww0 · 0)
extends to Pw.

Let Pw act on G/B×G/B×g by the left multiplication on the first factor and the trivial
action on the two other factors. We identify Z0(Z) with a subgroup of the free abelian
group ZdimG(G/B×G/B×g) generated by the irreducible subschemes of G/B×G/B×g
of codimension dimG, equivalently of dimension dimZ. Any element of Pw(k) induces an
automorphism of ZdimG(G/B×G/B× g) by the above action of Pw on G/B×G/B× g.

Lemma 2.4.8. For w ∈ W the characteristic cycle:
[L(ww0 · 0)] ∈ Z0(Z) ⊂ ZdimG(G/B ×G/B × g)

is invariant under the action of any element of Pw(k).

Proof. Denote by L′(ww0 ·0) the D-module on G/B associated to the object L(ww0 ·0) of
O(0) by the equivalence BBB of Remark 2.4.3. As the action of B on L(ww0 · 0) extends
to Pw, we get that L′(ww0 · 0) is in fact Pw-equivariant (and not just B-equivariant).
Hence if we pass from B-equivariant D-modules on G/B to G-equivariant D-modules on
G/B × G/B as in Remark 2.4.3, we get that the D-module L(ww0 · 0) on G/B × G/B
is equivariant for the action of Pw by left multiplication on the second factor G/B, in
addition to being equivariant for the action of G by diagonal left multiplication on the
two factors.

This action of Pw on G/B ×G/B induces an action on:
T ∗(G/B ×G/B) ' g̃× g̃ ↪→ G/B × g×G/B × g

which is itself induced by the action of Pw on the right hand side given by the left
multiplication on the third factor G/B and the adjoint action on the fourth factor g (and
the trivial action on the first two factors). The projection:

G/B × g×G/B × g � G/B ×G/B × g, (g1B,ψ1, g2B,ψ2) 7−→ (g1B, g2B,ψ2)
is obviously Pw-equivariant for the action of Pw on G/B × G/B × g given by the left
multiplication on the second factor G/B and the adjoint action on the third factor g.
Since the composition:

Z ↪→ T ∗(G/B ×G/B) ↪→ G/B × g×G/B × g � G/B ×G/B × g

is still injective, all this implies that [L(ww0 · 0)] ∈ Z0(Z) is invariant under the action of
Pw(k) on ZdimG(G/B ×G/B × g) induced by this last action on G/B ×G/B × g.

But as [L(ww0 · 0)] is also invariant under the action of G on G/B×G/B× g given by
the diagonal left multiplication on the first two factors and the adjoint action on the third,
it follows that it is also invariant under the action of Pw(k) induced on ZdimG(G/B ×
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G/B × g) by the left translation on the first factor of G/B × G/B × g (and the trivial
action on the second and third factors). This is exacty the assertion of the lemma. �

Remark 2.4.9. Let h ∈ Pw(k), since h(Zw′) ⊆ G/B × G/B × g is isomorphic to Zw′′
inside G/B × G/B × g if and only if w′ = w′′ (look at the respective projections in
G/B × G/B), it follows from Lemma 2.4.8 and (iii) of Theorem 2.4.7 that whenever
aw,w′ 6= 0 we have h(Zw′) = Zw′ for any h ∈ Pw(k) (in particular h(Zw) = Zw).

2.5. Completions and tangent spaces. We prove some useful results related to com-
pletions and tangent spaces on the varieties X and Z. These results will be used at
several places in the rest of the paper.

It follows from (2.9) that the induced map (κ1, κ2) : X −→ t × t factors through the
fiber product t×t/W t. We denote by T := t×t/W t this fiber product (though both have
the same dimension, there should be no confusion with the torus T of G which won’t
directly appear).

Lemma 2.5.1. The irreducible components of T = t×t/W t are the (Tw)w∈W where:
Tw := {(z,Ad(w−1)z), z ∈ t}

and Xw is the unique irreducible component of X such that (κ1, κ2)(Xw) = Tw.

Proof. The first half of the statement is clear since the Tw are irreducible closed sub-
schemes of T with the same dimension. The second half follows from Lemma 2.3.4 and
the surjectivity of κi,w (Lemma 2.3.1). �

For w ∈ W denote by ηXw ∈ X (resp. ηTw ∈ T ) the generic point corresponding to the
irreducible component Xw (resp. Tw), then it follows from Lemma 2.5.1 that the map
(κ1, κ2) : X −→ T is such that (κ1, κ2)(ηXw) = ηTw for all w ∈ W .

Let x be a closed point of X, w ∈ W such that x ∈ Xw ⊂ X and recall that T̂(κ1,κ2)(x)

(resp. T̂w,(κ1,κ2)(x)) is the completion of T (resp. Tw) at the point (κ1, κ2)(x). We have a
commutative diagram of formal schemes over k:

X̂w,x
� � //

��

X̂x

��

T̂w,(κ1,κ2)(x)
� � // T̂(κ1,κ2)(x).

In §3.5 we will use the following lemma.

Lemma 2.5.2. Let x, w be as above and let w′ ∈ W . The composition of the morphisms
X̂w,x ↪→ X̂x −→ T̂(κ1,κ2)(x) factors through T̂w′,(κ1,κ2)(x) ↪→ T̂(κ1,κ2)(x) if and only if w′ = w.

Proof. Let A be a local excellent reduced ring such that A/p is normal for each minimal
prime ideal p of A and let Â be the completion of A with respect to mA. Then the
morphism Spec Â −→ SpecA induces a bijection between the sets of minimal prime
ideals on both sides. Indeed, let B be the integral closure of A, i.e. the product over the
minimal prime ideals p of A of the integral closures of A/p. Then by [37, Sch.7.8.3(vii)]
there is a canonical bijection between the set of minimal prime ideals of Â and the set of
maximal ideals of B. But since A/p is normal by assumption we have B = ∏

pA/p, and
the set of maximal ideals of B is in bijection with the set of minimal prime ideals of A.
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Now the local ringOX,x ofX at x satisfies all the above assumptions by [37, Prop.7.8.6(i)],
[37, Sch.7.8.3(ii)], (i) of Theorem 2.2.6 and Theorem 2.3.6. Likewise with the local ring
OT,(κ1,κ2)(x) since the irreducible components Tw are smooth (being isomorphic to t). In
particular the nonempty Spec ÔXw′ ,x (resp. Spec ÔTw′ ,(κ1,κ2)(x)) for w′ ∈ W are the irre-
ducible components of Spec ÔX,x (resp. Spec ÔT,(κ1,κ2)(x)). Denote by η̂Xw ∈ Spec ÔX,x
(resp. η̂Tw ∈ Spec ÔX,x) the generic point of Spec ÔXw,x (resp. Spec ÔTw,(κ1,κ2)(x)), it is
enough to prove that the map Spec ÔX,x −→ Spec ÔT,(κ1,κ2)(x) sends η̂Xw to η̂Tw . But this
follows from what precedes together with the commutative diagram:

Spec ÔX,x //

��

SpecOX,x

��
Spec ÔT,(κ1,κ2)(x) // SpecOT,(κ1,κ2)(x)

and the fact both η̂Xw and η̂Tw are sent to ηTw in SpecOT,(κ1,κ2)(x). �

Denote by TXw,x the tangent space of Xw at x, which is just the same thing as the
k(x)-vector space X̂w,x(k(x)[ε]).

Proposition 2.5.3. Assume that x ∈ Xw ⊂ G/B ×G/B × g is such that its image in g
is 0 and let w′ ∈ W such that x ∈ Xw ∩ Vw′.
(i) We have:

dimk(x) TXw,x ≤ dimk(π(x)) TUw,π(x) + dimk(x) t
ww′−1

(k(x)) + lg(w′w0).

(ii) If tww′−1 has codimension lg(w) − lg(w′) in t and Uw is smooth at π(x), then Xw is
smooth at x.

Proof. (i) Replacing k by its finite extension k(x) if necessary and base changing, we can
assume x ∈ Xw(k) and k(x) = k(π(x)) = k. Since Xw and Uw are G-equivariant, we can
assume π(x) = (B,w′B) ∈ G/B×G/B. Recall that π(Xw) = Uw (see the proof of Lemma
2.2.4), hence we have a closed immersion Xw ↪→ Uw×g, and thus also a closed immersion
X̂w,x ↪→ (̂Uw)π(x) × ĝ where ĝ is the completion of g at 0. Hence any vector ~v ∈ TXw,x is
of the form ~v = (ĝ1B(k[ε]), ĝ2B(k[ε]), εψ) where (ĝ1, ĝ2) ∈ G(k[ε])×G(k[ε]) is such that
(ĝ1B(k[ε]), ĝ2B(k[ε])) ∈ TUw,π(x) = (̂Uw)π(x)(k[ε]) and where ψ ∈ g(k). Working out the
condition (2.3) for (ĝ1B(k[ε]), ĝ2B(k[ε]), εψ) to be in X̂x(k[ε]) we find (π(x), ψ) ∈ X(k),
hence (π(x), ψ) ∈ Vw′(k) since π(x) ∈ Uw′(k). This implies in particular κ2((π(x), ψ)) =
Ad(w′−1)κ1((π(x), ψ)). Since ~v ∈ X̂w,x(k[ε]), Lemma 2.3.4 implies in t̂(k[ε]) (where t̂ :=
completion of t at 0):

Ad(ĝ−1
2 )εψ = Ad(w−1)Ad(ĝ−1

1 )εψ
and thus κ2((π(x), ψ)) = Ad(w−1)κ1((π(x), ψ)). Hence we have κ1((π(x), ψ)) ∈ tw̃(k)
where w̃ := ww′−1 and from (2.7) (with g = 1) we obtain ψ ∈ tw̃(k)⊕(u(k)∩Ad(w′)u(k)).
We deduce an injection of k-vector spaces:

TXw,x ↪→ TUw,π(x) ⊕ tw̃(k)⊕ (u(k) ∩ Ad(w′)u(k))
and the upper bound in the statement is precisely the dimension of the right hand side.

(ii) Under the assumptions we have dimk(π(x)) TUw,π(x) = dimUw = dimG/B + lg(w).
So we find using lg(w′w0) = dimG/B− lg(w′) and dimk(x) t

ww′−1(k(x)) = dim t− (lg(w)−
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lg(w′)):
dimk(x)TXw,x ≤ dimG/B + lg(w) + dim t− lg(w) + lg(w′) + dimG/B − lg(w′)

= 2 dimG/B + dim t = dimG.

Since dimG = dimXw ≤ dimk(x) TXw,x, we deduce dimk(x) TXw,x = dimG = dimXw

whence the smoothness at x. �

Remark 2.5.4. One can prove that, at least for w = w0, Conjecture 2.3.7 (for w = w0)
implies that the inequality in (i) of Proposition 2.5.3 is an equality.

IfM is a coherent OX-module, we define its class [M] ∈ Z0(Z) as in (2.13) replacing
m(Zw, Y ) by the length m(Zw,M) of the OX,ηZw -moduleMηZw

. Let x be a closed point
in X (or equivalently in Z), then it follows from [37, Sch.7.8.3(vii)] and [37, Sch.7.8.3(x)]
that the completed local rings ÔZ,x, ÔZw,x are reduced equidimensional (of dimension
dimZ when nonzero). Moreover the set of irreducible components of Spec ÔZ,x is the
union for all w ∈ W of the sets of irreducible components of Spec ÔZw,x (note that we
don’t know whether Spec ÔZw,x is irreducible, see Remark 2.4.2 and [37, Sch.7.8.3(vii)]).
We define M̂x := M⊗O

X
ÔX,x which also has a class [M̂x] in Z0(Spec ÔZ,x). Likewise

we define [Spec ÔZw,x] ∈ Z0(Spec ÔZ,x).

Lemma 2.5.5. We have:
[M̂x] =

∑
w∈W

m(Zw,M)[Spec ÔZw,x] ∈ Z0(Spec ÔZ,x).

Proof. Using that the irreducible components of SpecOZ,x are the SpecOZw,x for w ∈ W ,
from the definition of m(Zw,M) it is obvious that:

[Mx] =
∑
w∈W

m(Zw,M)[SpecOZw,x] ∈ Z0(SpecOZ,x)

where Mx := M⊗O
X
OX,x. Let W (x) := {w ∈ W, x ∈ Zw} and denote by pw for

w ∈ W (x) the minimal prime ideal of OX,x (or equivalently OZ,x) corresponding to OZw,x
and by qw,1, . . . , qw,rw the minimal prime ideals of Spec ÔX,x (or equivalently Spec ÔZ,x)
above pw (recall that the morphism of local rings OX,x −→ ÔX,x is faithfully flat). Then
by definition (and since ÔZw,x = 0 if w /∈ W (x)):

[M̂x] =
∑

w∈W (x)

rw∑
i=1

(
lg(Ô

X,x
)qw,i

(M̂X,x)qw,i
)
[Spec(ÔZw,x/qw,i)] in Z0(Spec ÔZ,x).

But we have (M̂X,x)qw,i = MX,x ⊗OX,x (ÔX,x)qw,i = (MX,x)pw ⊗(O
X,x

)pw (ÔX,x)qw,i from
which it easily follows that:

lg(Ô
X,x

)qw,i
(M̂X,x)qw,i = (lg(O

X,x
)pw (MX,x)pw)(lg(Ô

X,x
)qw,i

(ÔX,x)qw,i/pw)

= m(Zw,M) lg(Ô
X,x

)qw,i
(ÔX,x ⊗OX,x OZw,x)qw,i

which gives the result since ÔX,x ⊗OX,x OZw,x
∼→ ÔZw,x (recall the map OX,x → OZw,x is

surjective). �

Define for w ∈ W (see (iii) of Theorem 2.4.7):
(2.16) [L̂(ww0 · 0)x] :=

∑
w′∈W

aw,w′ [Spec ÔZw′ ,x] ∈ Z0(Spec ÔZ,x)
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(note that [L̂(ww0 · 0)x] 6= 0 when w ∈ W (x) since aw,w = 1).

Corollary 2.5.6. For w ∈ W we have:
[ÔXw,x

] =
∑
w′∈W

Pw0w,w0w′(1)[L̂(w′w0 · 0)x] ∈ Z0(Spec ÔZ,x).

Proof. This follows from Proposition 2.4.6, (ii) of Theorem 2.4.7 and Lemma 2.5.5. �

3. A local model for the trianguline variety

We show that the completed local rings of the trianguline variety Xtri(r) at certain
sufficiently generic points of integral weights can be described (up to formally smooth
morphisms) by completed local rings on the variety X of §2 for a suitable G. This result
will have many local and global consequences in §4 and §5.

3.1. Almost de Rham BdR-representations. We define and study some groupoids of
equal characteristic deformations of an almost de Rham BdR-representation of GK and of
a filtered almost de Rham BdR-representation of GK .

We fix K a finite extension of Qp and first recall some statements on almost de Rham
representations of GK . In what follows the rings B+

dR and BdR are topological rings for
the so-called natural topology ([32, §3.2]) and all finite type modules over these rings are
endowed with the natural topology. As usual we use the notation t for “Fontaine’s 2iπ”
element depending on the choice of a compatible system of primitive pn-th roots of 1 inK.
Recall also that a BdR-representation of the group GK is a finite dimensional BdR-vector
space with a continuous semilinear action of GK ([32, §3]). We denote by RepBdR

(GK)
the abelian category of BdR-representations of GK . If W is an object of RepBdR

(GK), it
follows from the compacity of GK and the fact that B+

dR is a discrete valuation ring thatW
contains a B+

dR-lattice stable under GK . We say that W is almost de Rham ([32, §3.7]) if
it contains a GK-stable B+

dR-lattice W+ such that the Sen weights of the C-representation
W+/tW+ are all in Z.

Let B+
pdR be the algebra B+

dR[log(t)] defined in [32, §4.3] and BpdR := BdR ⊗B+
dR

B+
pdR.

The group GK acts on B+
pdR via ring homomorphisms extending its usual action on B+

dR
and such that g(log(t)) = log(t) + log(ε(g)). This action naturally extends to BpdR.
Moreover there is a unique BdR-derivation νBpdR of BpdR such that νBpdR(log(t)) = −1,
and it obviously preserves B+

pdR and commutes with GK . If W is a BdR-representation
of GK , we set DpdR(W ) := (BpdR ⊗BdR W )GK , which is a finite dimensional K-vector
space of dimension ≤ dimBdR W (see [32, §4.3]). It follows from [32, Th.4.1(2)] that a
BdR-representation W is almost de Rham if and only if dimK DpdR(W ) = dimBdR W .
We say that a BdR-representation is de Rham if dimKW

GK = dimBdR W , hence any
de Rham BdR-representation is almost de Rham. The almost de Rham representations
form a tannakian subcategory ReppdR(GK) of RepBdR

(GK) which is stable under kernel,
cokernel, extensions (see [32, §3.7]).

If E is a field of characteristic 0, recall that the action of the additive algebraic group
Ga on some finite dimensional E-vector space V is equivalent to the data of some E-
linear nilpotent endomorphism νV of V , an element λ ∈ E = Ga(E) acting via exp(λνV ).
Consequently the category RepE(Ga) is equivalent to the category of pairs (V, νV ) with
V a finite dimensional E-vector space and νV a nilpotent E-linear endomorphism of V
(morphisms being the E-linear maps commuting with the νV ).
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If W is a BdR-representation, we let Ga act on DpdR(W ) via the K-linear endomor-
phism induced by νBpdR ⊗ 1 on BpdR ⊗BdR W . Then DpdR is a functor from the category
RepBdR

(GK) to the category RepK(Ga).

Proposition 3.1.1. The functor DpdR induces an equivalence of categories between
ReppdR(GK) and RepK(Ga).

Proof. By [32, Th.3.19(iii)] any object W of ReppdR(GK) is isomorphic to a direct sum
of BdR[0; d] where BdR[0; d] ⊂ BpdR is the subspace of BdR-polynomials of degree < d in
log(t) as defined in [32, Th.3.19]. It follows that K∞ ⊗K DpdR(W ) and DdR,∞(W ) are
isomorphic as objects of RepK∞(Ga) where DdR,∞(W ) is defined in [32, §3.6].

Let W1 and W2 be two objects of ReppdR(GK). It then follows from [32, Th.3.17] that
the natural map:
(3.1) HomReppdR(GK)(W1,W2) −→ HomRepK(Ga)(DpdR(W1), DpdR(W2))
induces an isomorphism:
K∞ ⊗K HomReppdR(GK)(W1,W2) ' HomRepK∞ (Ga)(K∞ ⊗K DpdR(W1), K∞ ⊗K DpdR(W2)).
As the natural map:

K∞ ⊗K HomRepK(Ga)(DpdR(W1), DpdR(W2))
−→ HomRepK∞ (Ga)(K∞ ⊗K DpdR(W1), K∞ ⊗K DpdR(W2))

is an isomorphism ([42, §I.2.10(7)]), the map (3.1) is also an isomorphism and the restric-
tion of DpdR to ReppdR(GK) is fully faithful.

Let V be a finite dimensional K-representation of Ga. We can write V as a direct sum
of indecomposable objects of dimensions d1, . . . , dr and we see that V is isomorphic to the
vector space DpdR(⊕r

i=1 BdR[0; di]). The functor DpdR is thus essentially surjective. �

Corollary 3.1.2. Let (V, νV ) be an object of RepK(Ga) and set:
W (V, νV ) := (BpdR ⊗K V )νBpdR⊗1+1⊗νV =0.

Then W (V, νV ) is an almost de Rham BdR-representation of dimension dimK V and the
functor (V, νV ) 7→ W (V, νV ) is a quasi-inverse of DpdR in Proposition 3.1.1. Moreover
the functors DpdR (restricted to the category ReppdR(GK)) and W are exact.

Proof. Let W be an object of ReppdR(GK), then the natural BpdR-linear map:
(3.2) ρpdR : BpdR ⊗K DpdR(W ) −→ BpdR ⊗BdR W

is an isomorphism by [32, Th.3.13] and identifies W with W (DpdR(W ), νDpdR(W )). The
other assertions are direct consequences of these statements together with Proposition
3.1.1 and the fact that an additive equivalence between abelian categories is exact. �

Let A be a finite dimensional Qp-algebra. We define an A ⊗Qp BdR-representation
of GK as a BdR-representation W of GK together with a morphism of Qp-algebras A→
EndRepBdR (GK)(W ) which makesW a finite freeA⊗QpBdR-module. We denote by RepA⊗QpBdR

(GK)
the category of A⊗QpBdR-representation of GK . We say that an A⊗QpBdR-representation
of GK is almost de Rham if the underlying BdR-representation is, and define ReppdR,A(GK)
as the category of almost de Rham A ⊗Qp BdR-representation of GK (with obvious mor-
phisms).
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Remark 3.1.3. An A⊗Qp BdR-representation of GK always contains a B+
dR-lattice which

is preserved by the action of A. In fact, it is possible that it always contains such a lattice
which is moreover free over A ⊗Qp B+

dR, but we won’t need that statement. This is at
least true for almost de Rham A ⊗Qp BdR-representations as a consequence of Lemma
3.2.2 below.

Lemma 3.1.4. The functor DpdR induces an equivalence of categories between ReppdR,A(GK)
and RepA⊗QpK

(Ga).

Proof. Let W be an almost de Rham BdR-representation of GK with a morphism of Qp-
algebras A → EndRepBdR (GK)(W ). It follows from Proposition 3.1.1 that it is enough to
check that W is a finite free A ⊗Qp BdR-module if and only if DpdR(W ) is a finite free
A ⊗Qp K-module. As the functor DpdR commutes with direct sums, we can moreover
assume that A is a local artinian (finite dimensional) Qp-algebra.

Let us first prove that DpdR(W ) is a flat A-module if and only if W is a flat A-
module. Let M be an A-module of finite type. As A is noetherian, the A-module M is
isomorphic to the cokernel of some A-linear map between finite free A-modules. Using
the fact that DpdR is an exact functor commuting with direct sums, the canonical map
M ⊗A DpdR(W ) −→ DpdR(M ⊗A W ) is an isomorphism. Using the exactness of DpdR
again, we conclude that DpdR(W ) is A-flat if and only if W is a A-flat.

If H is any field extension of Qp, we can check that an A ⊗Qp H-module M which is
A-flat is a finite free A⊗Qp H-module if and only if M/mAM is a finite free (A/mA)⊗Qp
H-module. Applying this result with H ∈ {K,BdR} together with the isomorphisms
DpdR(W/mAW ) ' (A/mA)⊗ADpdR(W ) andW (V/mAV ) = (A/mA)⊗AW (V ) (the latter
following from the exactness of the functor W ), we are reduced to the case where A is
replaced by A/mA, that is A is a finite field extension of Qp.

For K ′ a finite extension of K, we easily check that there is a canonical isomorphism
K ′⊗KDpdR(W ) ' (BpdR⊗QpW )GK′ so thatW |GK′ is almost de Rham. MoreoverDpdR(W )
is a finite free A⊗Qp K-module if and only if K ′ ⊗K DpdR(W ) is a finite free A⊗Qp K ′-
module. We can thus replace K by an arbitrary finite K ′ and hence assume A⊗Qp K '⊕[A:Qp]

i=1 Kei with e2
i = ei. Writing A ⊗Qp BdR = (A ⊗Qp K) ⊗K BdR '

⊕[A:Qp]
i=1 BdRei, we

have W = ⊕
i(eiW ) and:

DpdR(
⊕
i

(eiW )) =
⊕
i

(eiDpdR(W )).

As W is almost de Rham, so is eiW and thus:

dimK eiDpdR(W ) = dimK DpdR(eiW ) = dimBdR eiW.

We conclude that DpdR(W ) is a finite free A ⊗Qp K-module if and only if W is a finite
free A⊗Qp BdR-module. �

Let L be a finite extension of Qp that splits K and set:

G := SpecL×SpecQp ResK/Qp(GLn/K) ' GLn/L × · · · ×GLn/L︸ ︷︷ ︸
[K:Qp] times

.

We let B = UT ⊂ G the Borel subgroup of upper triangular matrices where T is the
diagonal torus and U the upper unipotent matrices and define g, b, t, u, g̃, X, etc. as
in §2.1 (with k = L). We refer the reader to the appendix of [49] for a summary of the
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basic definitions, notation and properties of categories cofibered in groupoids, that we
use without comment below and in the next sections.

We fix W an almost de Rham L⊗Qp BdR-representation of GK of rank n ≥ 1 and define
XW a groupoid over CL (or a category cofibered in groupoids over CL) as follows.

• The objects of XW are triples (A,WA, ιA) where A is an object of CL, WA is an
object of ReppdR,A(GK) and ιA : WA ⊗A L

∼−→ W .
• A morphism (A,WA, ιA) −→ (A′,WA′ , ιA′) is a map A −→ A′ in CL and an isomor-
phism WA ⊗A A′

∼−→ WA′ compatible (in an obvious sense) with the morphisms
ιA and ιA′ .

Remark 3.1.5. Since the category of almost de Rham BdR-representations is stable under
extensions, any A⊗Qp BdR-representation of GK which deformsW is in fact automatically
almost de Rham, by using a dévissage on the finite dimensional L-algebra A.

Let α : (L⊗Qp K)n ∼−→ DpdR(W ) be a fixed isomorphism, we define another groupoid
X�
W over CL as follows.

• The objects of X�
W are (A,WA, ιA, αA) with (WA, ιA) an object of XW (A) and

αA : (A⊗Qp K)n ∼−→ DpdR(WA) such that the following diagram commutes:

(L⊗Qp K)n 1⊗αA // L⊗A DpdR(WA)
'
��

(L⊗Qp K)n α // DpdR(W ).

• A morphism (A,WA, ιA, αA) −→ (A′,W ′
A, ιA′ , αA′) is a morphism (A,WA, ιA) −→

(A′,WA′ , ιA′) in XW such that the following diagram commutes:

A′ ⊗A (A⊗Qp K)n 1⊗αA // A′ ⊗A DpdR(WA)
'
��

(A′ ⊗Qp K)n
αA′ // DpdR(WA′).

Forgetting αA gives an obvious functor X�
W −→ XW which is a morphism of groupoids

over CL in the sense of [49, §A.4].
Recall that a morphism X −→ Y of groupoids over CL is formally smooth if, for any

surjection A� B in CL, any object xB in X(B) and any object yA in Y (A) such that the
image of xB under the functor X(B)→ Y (B) is isomorphic to the image of yA under the
functor Y (A)→ Y (B), then there exists an object xA in X(A) such that xA maps to an
object isomorphic to xB under X(A) → X(B) and xA maps to an object isomorphic to
yA under X(A) → Y (A). For instance it is easy to check that X�

W −→ XW is formally
smooth.

If X is a groupoid over CL such that, for each object A of CL, the isomorphism classes
of the category X(A) form a set, we denote by |X|(A) this set so that we obtain a functor
|X| from CL to Sets as in [49, §A.5]. Note that we can also see any functor F : CL −→ Sets
as a groupoid over CL by defining its objects to be (A, x) with x ∈ F (A) and morphisms
(A, x) −→ (A′, x′) to be those morphisms A −→ A′ sending x ∈ F (A) to x′ ∈ F (A′).
Then we have an obvious morphism X −→ |X| of groupoids over CL. For instance we
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have functors (or groupoids over CL) |XW | and |X�
W | and a commutative diagram:

X�
W

//

��

XW

��
|X�

W | // |XW |

where the horizontal morphisms are formally smooth. Moreover the morphism X�
W −→

|X�
W | is actually an equivalence since any automorphism of an object (A,WA, ιA, αA) of

X�
W (A) is the identity on DpdR(WA) because of the framing, hence is also the identity on

WA because of Lemma 3.1.4.
If (WA, ιA) is an object of XW (A), we denote by νWA

:= νDpdR(WA) the nilpotent endo-
morphism of DpdR(WA) giving the action of Ga. If (WA, ιA, αA) is an object of X�

W (A),
we define NWA

∈Mn(A⊗Qp K) = g(A) as the matrix of α−1
A ◦ νWA

◦ αA in the canonical
basis of (A ⊗Qp K)n (in the case A = L, we simply write NW ). We denote by ĝ the
completion of g at the point NW ∈ g(L), that we can see as a functor CL → Sets (hence
also as a groupoid over CL).

Corollary 3.1.6. The groupoid X�
W over CL is pro-representable. The functor:

(WA, ιA, αA) 7−→ NWA

induces an isomorphism of functors between |X�
W | and ĝ. In particular the functor |X�

W |
is pro-represented by a ring R�

W which is isomorphic to L[[X1, . . . , Xn2[K:Qp]]].

Proof. This easily follows from Lemma 3.1.4. �

Remark 3.1.7. The functor |XW | is not pro-representable, though it has a hull in the
sense of [56, Def.2.7]. The dimension of this hull depends on the Jordan form of νW . For
example, if νW = 0, one can check that the dimension of the tangent space |XW |(L[ε]) of
|XW | is n2[K : Qp] so that R�

W is a hull for |XW | (we won’t use that result).

Definition 3.1.8. A filtered A⊗QpBdR-representation (W,F•) is an A⊗QpBdR-representation
W of GK with an increasing filtration F• = (Fi)i∈{1,...,n} (where n is the rank of W ) by
A ⊗Qp BdR-subrepresentations of GK such that the A ⊗Qp BdR-modules F1 and Fi/Fi−1
for 2 ≤ i ≤ n are free of rank 1.

If A −→ B is a map in CL and (W,F•) is a filtered A ⊗Qp BdR-representation of GK ,
we define B ⊗A F• := (B ⊗A Fi)i and (B ⊗A W,B ⊗A F•) is then a filtered B ⊗Qp BdR-
representation of GK .

Let (W,F•) be a filtered L ⊗Qp BdR-representation of GK with W almost de Rham of
rank n ≥ 1. Then each quotient Fi/Fi−1 is almost de Rham and finite free of rank one
over L⊗QpBdR and thus (e.g. using Lemma 3.1.4) isomorphic to the trivial representation
L⊗Qp BdR. We define the groupoid XW,F• over CL of deformations of (W,F•) as follows.

• The objects of XW,F• are (A,WA,FA,•, ιA) where (WA, ιA) is an object of XW (A)
and FA,• is a filtration of WA as in Definition 3.1.8 such that ιA induces isomor-
phisms FA,i ⊗A L ∼−→ Fi for all i.
• The morphisms are the morphisms in XW compatible with the filtrations, i.e.
which induce isomorphisms FA,i ⊗A A′ ∼−→ FA′,i for all i.

Forgetting the filtration yields a morphism XW,F• −→ XW of groupoids over CL.
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Now we define the groupoid X�
W,F• over CL as the fiber product XW,F•×XWX�

W (see [49,
§A.4]). More explicitely the objects of X�

W,F• are (A,WA,FA,•, ιA, αA) with (WA,FA,•, ιA)
in XW,F•(A) and (WA, ιA, αA) in X�

W (A) (morphisms are left to the reader).
We set D• = (Di)i∈{1,...,n} with Di := DpdR(Fi) and, if (A,WA,FA,•, ιA, αA) is an object

of X�
W,F• , we set DA,• = (DA,i)i with DA,i := DpdR(FA,i). These are complete flags of

DpdR(W ) and DpdR(WA) (respectively) and stable under νW , resp. νWA
. We denote bŷ̃g (resp. t̂) the completion of g̃ (resp. t) at the point (α−1(D•), NW ) ∈ g̃(L) (resp. at

the point 0 ∈ t(L)). From Lemma 3.1.4 (and what precedes) and the smoothness of the
L-scheme g̃, we deduce as for Corollary 3.1.6 the following result.

Corollary 3.1.9. The groupoid X�
W,F• over CL is pro-representable. The functor:

(WA,FA,•, ιA, αA) 7−→ (α−1
A (DA,•), NWA

)

induces an isomorphism of functors between |X�
W,F•| and

̂̃g. In particular the functor
|X�

W,F•| is pro-represented by a formally smooth noetherian complete local ring of residue
field L and dimension n2[K : Qp] = dim g̃.

Let κ : g̃ → t, (gB, ψ) 7→ Ad(g−1)ψ be the weight map defined in §2.3, it maps the
point (α−1(D•), NW ) ∈ g̃(L) to 0 ∈ t(L) (since NW is nilpotent) and induces a morphism
κ̂ : ̂̃g→ t̂. We write κW,F• for the composition of the morphisms of groupoids over CL:

X�
W,F• −→ |X

�
W,F•|

∼−→ ̂̃g κ̂−→ t̂

where the second map is the isomorphism of Corollary 3.1.9. One checks that κW,F•
actually factors through a map still denoted κW,F• : XW,F• −→ t̂ (as changing the fixed
basis replaces (gB, ψ) ∈ g̃(A) by (g′gB,Ad(g′)ψ) for some g′ ∈ G(A) with the notation
of §2.1 which doesn’t change the image by κ). We thus have a commutative diagram:

(3.3) X�
W,F•

//

κW,F•
$$

XW,F•

κW,F•
��

t̂.

The map κW,F• : XW,F• −→ t̂ has the following functorial interpretation. Let xA =
(WA,FA,•, ιA) be an object of XW,F•(A). The endomorphism νWA

induces an endomor-
phism νA,i of each DA,i/DA,i−1 ' DpdR(FA,i/FA,i−1) which is an A⊗QpK-module of rank
1. Since there is a canonical isomorphism EndRepA⊗QpK

(Ga)(DA,i/DA,i−1) ' A ⊗Qp K, we
can identify νA,i with a well-defined element of A ⊗Qp K. Then κW,F• is given by the
explicit formula:
(3.4) κW,F•(xA) = (νA,1, . . . , νA,n) ∈ (A⊗Qp K)n ' t̂(A).

3.2. Almost de Rham B+
dR-representations. We define and study some groupoids of

equal characteristic deformations of an almost de Rham B+
dR-representation of GK .

We define a B+
dR-representation of GK as a finite free B+

dR-module with a continu-
ous semilinear action of the group GK and denote by RepB+

dR
(GK) the category of B+

dR-
representation of GK . If W+ is a B+

dR-representation of GK , then W+ is a GK-stable
B+

dR-lattice in the BdR-representation W := W+ ⊗B+
dR

BdR = W+[1
t
]. We say that W+

is almost de Rham if the Sen weights of the C-representation W+/tW+ are all in Z. It
30



follows from [32, Th.3.13] that this notion only depends on W and not on the chosen
invariant B+

dR-lattice inside W .
We just write V instead of (V, νV ) from now on for an object of RepK(Ga). If V

is in RepK(Ga), a filtration Fil•(V ) = (Fili(V ))i∈Z of V is by definition a decreasing,
exhaustive and separated filtration by subobjects in the category RepK(Ga). If W is
an object of ReppdR(GK) and W+ ⊂ W a GK-stable B+

dR-lattice, we define a filtration
Fil•W+(DpdR(W )) of DpdR(W ) by the formula:
(3.5) FiliW+(DpdR(W )) := (tiB+

pdR ⊗B+
dR
W+)GK ⊂ DpdR(W ) (i ∈ Z).

It follows from [32, Th.4.1(3)] that the i such that FiliW+(DpdR(W ))/Fili+1
W+(DpdR(W )) 6=

0 are the opposite of the Sen weights of W+/tW+ (counted with multiplicity).

Proposition 3.2.1. LetW be an object of ReppdR(GK). The mapW+ 7−→ Fil•W+(DpdR(W ))
is a bijection between the set of GK-stable B+

dR-lattices of W and the set of filtrations of
DpdR(W ) as a Ga-representation.

Proof. Let W+ be a GK-stable B+
dR-lattices of W . We define a decreasing filtration on

the left hand side of (3.2) by:
(3.6) FiliW+(BpdR ⊗K DpdR(W )) :=

∑
i1+i2=i

ti1B+
pdR ⊗K Fili2W+(DdR(W )) (i ∈ Z)

and recall from the proof of Corollary 3.1.2 thatW ' W (DpdR(W ), νDpdR(W )) = (BpdR⊗K
DpdR(W ))ν=0 where ν := νBpdR ⊗ 1 + 1 ⊗ νDpdR(W ). From the proof of [32, Th.3.13] we
see that (see (3.2) for ρpdR):
(3.7) ρpdR(FiliW+(BpdR ⊗K DpdR(W ))) ⊆ tiB+

pdR ⊗B+
dR
W+ (i ∈ Z).

Moreover the bottom horizontal arrow in the commutative diagram on page 62 of [32] is
actually in our case an isomorphism (see [32, §2.6]) which implies that (3.7) is in fact an
equality for all i ∈ Z. Consequently we see that for W+ ⊂ W a GK-stable B+

dR-lattice,
we have:

W+ = W ∩ ρpdR(Fil0W+(BpdR ⊗K DpdR(W ))) ⊂ BpdR ⊗BdR W

which proves that the map W+ 7→ Fil•W+(DpdR(W )) is injective.
Conversely let Fil•(DpdR(W )) be a filtration ofDpdR(W ), set Fil0(BpdR⊗KDpdR(W )) :=∑
i∈Z t

−iB+
pdR ⊗K Fili(DpdR(W )) and define:

W+
Fil• := W ∩ ρpdR(Fil0(BpdR ⊗K DpdR(W ))) = ρpdR(Fil0(BpdR ⊗K DpdR(W ))ν=0) ⊂ W.

The B+
dR-module W+

Fil• is clearly GK-stable. Moreover a B+
dR-submodule H of W is

a B+
dR-lattice if and only if ⋃n t−nH = W and ⋂

n t
nH = 0. Together with W '

ρpdR((BpdR⊗K DpdR(W ))ν=0) this implies that ρpdR((tnB+
pdR⊗K DpdR(W ))ν=0) is a B+

dR-
lattice of W for each n ∈ Z. Let i0 := max{i, Fili(DpdR(W )) = DpdR(W )} and i1 :=
min{i, Fili(DpdR(W ))=0}, then we have:

ρpdR((t−i0B+
pdR ⊗K DpdR(W ))ν=0) ⊆ W+

Fil• ⊆ ρpdR((t−i1B+
pdR ⊗K DpdR(W ))ν=0)

which implies that W+
Fil• is a B+

dR-lattice of W . One easily checks that ρpdR induces an
isomorphism Fil0(BpdR ⊗K DpdR(W )) ∼−→ B+

pdR ⊗B+
dR

Fil0(BpdR ⊗K DpdR(W ))ν=0 which
implies Fil0(BpdR⊗KDpdR(W )) = Fil0W+

Fil•
(BpdR⊗KDpdR(W )) by the first part of the proof

(apply the equality (3.7) for i = 0 with W+
Fil•), from which one gets Fil•(DpdR(W )) =

Fil•W+
Fil•

(DpdR(W )). This gives the surjectivity. �
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From now on, if V is an object of RepK(Ga) and Fil• = Fil•(V ) a filtration of V , we
denote byW+(V,Fil•) the GK-stable B+

dR-lattice of (BpdR⊗K V )νBpdR⊗1+1⊗νV =0 associated
to Fil• via Proposition 3.2.1.

Let A be a finite dimensional Qp-algebra. We define an A ⊗Qp B+
dR-representation

as a B+
dR-representation W+ of GK together with a morphism of Qp-algebras A →

EndRepB+
dR

(GK)(W+) which makes W+ a finite free A ⊗Qp B+
dR-module. We say that an

A⊗Qp B+
dR-representation of GK is almost de Rham if the underlying B+

dR-representation
is. We define the category of filtered A ⊗Qp K-representations of Ga as the category of
(V,Fil•) where V is an object of RepA⊗QpK

(Ga) and Fil• = Fil•(V ) = (Fili(V ))i∈Z a de-
creasing, exhaustive and separated filtration of V by subobjects Fili(V ) of RepA⊗QpK

(Ga)
such that the graded pieces griFil•(V ) := Fili(V )/Fili+1(V ) are free of rank 1 over A⊗QpK
for i ∈ Z (the obvious definition of morphisms being left to the reader).

Lemma 3.2.2. The functor defined by W+ 7−→ (DpdR(W+[1
t
]),Fil•W+), where one sets

Fil•W+ = Fil•W+(DpdR(W+[1
t
])) as defined in (3.5), induces an equivalence between the

category of almost de Rham A⊗Qp B+
dR-representations of GK and the category of filtered

A ⊗Qp K-representations of Ga. Moreover, if W+ is an almost de Rham A ⊗Qp B+
dR-

representation of GK and M is an A-module of finite type (note that M ⊗A W+ is then
a B+

dR-representation), then for each i ∈ Z there is a natural A-linear isomorphism of
B+

dR-representations:
M ⊗A griFil•

W+
(DpdR(W+[1

t
])) ' griFil•

M⊗AW+
(DpdR(M ⊗AW+[1

t
])).

Proof. Let BpHT = C[t, t−1, log(t)] as in [32, §2.7] and, for i ∈ Z, set:
Fili(BpHT) := tiC[t, log(t)] ⊂ BpHT.

Note that BpHT ∼= ⊕i∈Z gri(BpHT) where:
(3.8) gri(BpHT) := Fili(BpHT)/Fili+1(BpHT) = tiC[log(t)] ∼= tiB+

pdR/t
i+1B+

pdR.

For a C-representation U of GK , set :
DpHT(U) := (BpHT ⊗C U)GK

Fili(DpHT(U)) := (FiliBpHT ⊗C U)GK
gri(DpHT(U)) := Fili(DpHT(U))/Fili+1(DpHT(U)) ∼= (gri(BpHT)⊗C U)GK .

LetW+ be a B+
dR-representation of GK and setW := W+[1

t
] andW+ := W+/tW+, which

is a C-representation of GK . Left exactness of GK-invariants and the last isomorphism in
(3.8) give a natural injection griFil•

W+
(DpdR(W )) ↪→ gri(DpHT(W+)). If W+ is almost de

Rham, we have:

dimK DpdR(W ) =
∑
i

dimK griFil•
W+

(DpdR(W )) ≤
∑
i

dimK gri(DpHT(W+))

≤ dimK DpHT(W+) = dimCW+ = dimBdR(W ) = dimK DpdR(W )
where the first equality on the second line follows from the fact that the Sen weights of
W+ are in Z (i.e. W+ is almost Hodge-Tate in the sense of [32, §2.7]). We thus see
that griFil•

W+
(DpdR(W )) = gri(DpHT(W+)), and consequently that there is a functorial

isomorphism gr•Fil•
W+

(DpdR(W )) := ⊕i∈Z griFil•
W+

(DpdR(W )) ' DpHT(W+) on the category
of almost de Rham B+

dR-representations. As the functor DpHT is exact on the category
of C-representations with Sen weights in Z (see for example [32, Th.4.2]), we conclude
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that the functor W+ 7−→ gr•Fil•
W+

(DpdR(W )) from the category of almost de Rham B+
dR-

representations of GK to the category of finite dimensional K-vector spaces is exact.
Equivalently if 0→ W+

1 → W+
2 → W+

3 → 0 is a short exact sequence of almost de Rham
B+

dR-representations of GK and if Wi := W+
i [1

t
] for i ∈ {1, 2, 3}, we have a strict exact

sequence of filtered K-representations of Ga:
0 −→ (DpdR(W1),Fil•W+

1
) −→ (DpdR(W2),Fil•W+

2
) −→ (DpdR(W3),Fil•W+

3
) −→ 0.

Using that a B+
dR-submodule of a free B+

dR-module of finite type is also free of finite
type (as B+

dR is a discrete valuation ring), we get in particular that an exact sequence
W+

1 → W+
2 → W+

3 → 0 of almost de Rham B+
dR-representations yields an exact sequence:

gr•Fil•
W+

1

(DpdR(W1)) −→ gr•Fil•
W+

2

(DpdR(W2)) −→ gr•Fil•
W+

3

(DpdR(W3)) −→ 0.

We can then argue exactly as in the proof of Lemma 3.1.4 and obtain both the last
statement of the lemma (writing M as the cokernel of a linear map between free A-
modules of finite type) and the fact that if W+ is an almost de Rham A ⊗Qp B+

dR-
representation of GK then gr•Fil•

W+
(DpdR(W )) is a flat A-module.

Conversely if 0 → (V1,Fil•1) → (V2,Fil•2) → (V3,Fil•3) → 0 is a strict exact sequence
of filtered K-representations of Ga, then it follows from the definition of (V,Fil•) 7→
W+(V,Fil•) that there is an exact sequence of almost de Rham B+

dR-representations of
GK :

0 −→ W+(V1,Fil•1) −→ W+(V2,Fil•2) −→ W+(V3,Fil•3).
Considering the image ofW+(V2,Fil•2) inW+(V3,Fil•3) (which is still a B+

dR-representation
as B+

dR is a discrete valuation ring) and applying the exact functorW+ 7→ gr•Fil•
W+

(DpdR(W )),
we deduce that we have a short exact sequence:

0→ W+(V1,Fil•1)→ W+(V2,Fil•2)→ W+(V3,Fil•3)→ 0.

We can then argue again as in the proof of Lemma 3.1.4 and check that for each A-
module M of finite type and each filtered A ⊗Qp K-representation V of Ga, there is a
natural isomorphism M ⊗A W+(V,Fil•) ' W+(M ⊗A V,M ⊗A Fil•). If (V,Fil•) is a
filtered A ⊗Qp K-representations of Ga, then the A-module W+(V,Fil•) is A-flat if we
can prove that M 7→ (M ⊗A V,M ⊗A Fil•) sends short exact sequences of finite type
A-modules to strict exact sequences of filtered K-representations of Ga. But this is a
direct consequence of the above flatness of gr•Fil•(V ) (together with Proposition 3.2.1).

Thus we have proven that W+ is A-flat if and only if gr•Fil•
W+

(DpdR(W+[1
t
])) is A-flat.

The rest of the proof is then essentially similar to the second half of the proof of Lemma
3.1.4 (using that one can embed B+

dR into BdR) and yields that W+ is finite free over
A⊗Qp B+

dR if and only if gr•Fil•
W+

(DpdR(W+[1
t
])) is finite free over A⊗Qp K. �

Let L be a finite extension of Qp splitting K and recall that if A is an object of CL, we
have A ⊗Qp K ' ⊕τ∈ΣA. Let W+

A be an almost de Rham A ⊗Qp B+
dR-representation of

GK and set WA := W+
A [1

t
]. If τ ∈ Σ and i ∈ Z, set:

DpdR,τ (WA) := DpdR(WA)⊗A⊗QpK,1⊗τ A

FiliW+
A

(DpdR,τ (WA)) := FiliW+
A

(DpdR(WA))⊗A⊗QpK,1⊗τ A

griFil•
W+
A

(DpdR,τ (WA)) := FiliW+
A

(DpdR,τ (WA))/Fili+1
W+
A

(DpdR,τ (WA)).

It follows from Lemma 3.2.2 that they are all free A-modules of finite type.
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Now let W+ be an almost de Rham L⊗Qp B+
dR-representation of GK of rank n, W :=

W+[1
t
] and, for each τ ∈ Σ, denote by −hτ,1 ≥ · · · ≥ −hτ,n the integers i such that:

griFil•
W+

(DpdR,τ (W )) := FiliW+(DpdR,τ (W ))/Fili+1
W+(DpdR,τ (W )) 6= 0

(counted with multiplicity). Let A be in CL, W+
A an almost de Rham A ⊗Qp B+

dR-
representation of GK and ιA : W+

A ⊗A L
∼−→ W+ an isomorphism of L ⊗Qp B+

dR-
representations of GK . The following result is a direct consequence of the last statement
of Lemma 3.2.2.

Corollary 3.2.3. For each τ ∈ Σ and i ∈ Z we have:
griFil•

W+
A

(DpdR,τ (WA))⊗A L ∼−→ griFil•
W+

(DpdR,τ (W )).

In particular griFil•
W+
A

(DpdR,τ (WA)) 6= 0 if and only if there exists j such that i = −hτ,j.

We can define groupoids XW+ and X�
W+ over CL of respectively deformations and

framed deformations of W+ exactly as we defined XW and X�
W in §3.1 by replacing W ,

WA in XW by W+, W+
A with W+

A an almost de Rham A ⊗Qp B+
dR-representation of GK .

Note that X�
W+ = XW+ ×XW X�

W . We have X�
W+ −→ XW+ and inverting t induces

morphisms XW+ −→ XW , X�
W+ −→ X�

W of groupoids over CL together with an obvious
commutative diagram. We will make X�

W+ more explicit under one more assumption on
W+.

Definition 3.2.4. Let W+ be an almost de Rham L ⊗Qp B+
dR-representation of rank

n. We say that W+ is regular if for each τ ∈ Σ the hτ,i are pairwise distinct, i.e.
hτ,1 < · · · < hτ,n.

Assume that W+ is moreover regular. Let A be an object of CL and (W+
A , ιA, αA) an

object of X�
W+(A). We define a complete flag:

FilW+
A ,•

= FilW+
A ,•

(DpdR(WA)) := (FilW+
A ,i

(DpdR(WA)))i∈{1,...,n}
of the free A⊗Qp K-module DpdR(WA) by the formula:

(3.9) FilW+
A ,i

(DpdR(WA)) :=
⊕
τ∈Σ

Fil−hτ,i
W+
A

(DpdR,τ (WA)) i ∈ {1, . . . , n}

and it follows from Corollary 3.2.3 that each FilW+
A ,i

(DpdR(WA))/FilW+
A ,i−1(DpdR(WA)) is

a free A⊗QpK-module of rank 1. Since FilW+
A ,•

is stable under the endomorphism νWA
of

DpdR(WA), the pair (α−1
A (FilW+

A ,•
), NWA

) defines an element of g̃(A) where NWA
∈ g(A)

is as in §3.1. Denote by ̂̃g the completion of g̃ at the point (FilW+,•, NW ) ∈ g̃(L) (note
that the formal scheme ̂̃g here is in general different from the formal scheme also denoted̂̃g in §3.1 since we complete at different points of g̃(L), see §3.5 for the mix of the two!).

Like for Corollary 3.1.9, we deduce the following result from Lemma 3.2.2.

Theorem 3.2.5. The groupoid X�
W+ is pro-representable. The functor:

(W+
A , ιA, αA) 7−→ (α−1

A (FilW+
A ,•

), NWA
)

induces an isomorphism of functors between |X�
W+ | and ̂̃g. In particular the functor |X�

W+ |
is pro-represented by a formally smooth noetherian complete local ring of residue field L
and dimension n2[K : Qp] = dim g̃.
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As in §3.1 we write κW+ for the composition of the morphisms of groupoids over CL:

X�
W+ −→ |X�

W+| ∼−→ ̂̃g κ̂−→ t̂

where the second map is the isomorphism of Corollary 3.2.5 and κ̂ is induced by κ : g̃→ t
(where t̂ is the completion of t at 0). By the same argument as in §3.1 the morphism
κW+ again factors through a map still denoted κW+ : XW+ −→ t̂ so that we have a
commutative diagram:

X�
W+ //

κW+
##

XW+

κW+
��

t̂.

3.3. Trianguline (ϕ,ΓK)-modules over RK [1
t
]. We define and study some groupoids of

equal characteristic deformations of a (ϕ,ΓK)-module over RL,K [1
t
] and of a triangulated

(ϕ,ΓK)-module over RL,K [1
t
].

We define a (ϕ,ΓK)-module over RK [1
t
] as a finite free RK [1

t
]-moduleM with a semi-

linear endomorphism ϕ and a semilinear action of the group ΓK commuting with ϕ
and such that there exists an RK-lattice D of M stable under ϕ and ΓK which is a
(ϕ,ΓK)-module over RK in the usual sense (see e.g. [45]). Let A be a finite dimensional
Qp-algebra, we define a (ϕ,ΓK)-module over RA,K [1

t
] as a finite free RA,K [1

t
]-module with

an additional structure of (ϕ,ΓK)-module over RK [1
t
] such that the actions of ϕ and ΓK

are A-linear. We denote by ΦΓ+
K the category of (ϕ,ΓK)-modules over RK , ΦΓK the

category of (ϕ,ΓK)-modules over RK [1
t
] and ΦΓA,K the category of (ϕ,ΓK)-modules over

RA,K [1
t
] (with obvious morphisms).

Remark 3.3.1. Here again (compare Remark 3.1.3), it is possible that a (ϕ,ΓK)-module
in ΦΓA,K always contains an RA,K-lattice stable under ϕ and ΓK , but we don’t need this
result (note that it always contains an RK-lattice stable under ϕ, ΓK and A). This is true
at least for those objects in ΦΓA,K giving rise to almost de Rham BdR-representations of
GK , see Remark 3.5.2.

Definition 3.3.2. Let A be a finite dimensional Qp-algebra andM an object of ΦΓA,K.
We say that M is of character type if there exists a continuous character δ : K× → A×

such thatM' RA,K(δ)[1
t
].

From now on we assume moreover that L splits K, that L ⊆ A and that A is local.
For τ ∈ Σ we also fix a Lubin-Tate element tτ ∈ RL,K as in [45, Not.6.2.7] (recall that
the ideal tτRL,K only depends on τ).

We say that a continuous character δ : K× → A× is Qp-algebraic, or more simply
algebraic, if it has the following form: for each τ ∈ Σ, there exists an integer kτ such that
δ(z) = ∏

τ∈Σ τ(z)kτ for z ∈ K×. If k := (kτ )τ ∈ Z[K:Qp], we write zk this character. A
continuous character K× → A× is said to be constant if it factors through K× → L× ⊂
A× (i.e. is a constant family viewed as a family of characters over SpA). Note that with
this terminology any algebraic character is constant.

Let δ : K× → L× be continuous. It follows from [45, Cor.6.2.9] that every non zero
(ϕ,ΓK)-submodule of RL,K(δ)[1

t
] is of the form tkRL,K(δ) for some k = (kτ )τ ∈ Z[K:Qp]

where tk := ∏
τ t

kτ
τ ∈ RL,K .

35



Let ∆K be the torsion subgroup of ΓK and fix γK ∈ ΓK a topological generator of
ΓK/∆K . If M is an object of ΦΓK , we define H i

ϕ,γK
(M) as the cohomology of the

complex:

(3.10) M∆K
(ϕ−1),(γK−1)−−−−−−−−→M∆K ⊕M∆K

(1−γK ,ϕ−1)−−−−−−−→M∆K .

IfM is an object of ΦΓA,K then the groups H i
ϕ,γK

(M) are A⊗Qp K-modules. Moreover
if D ⊂M is a (ϕ,ΓK)-submodule such thatM = D[1

t
], then we have the formula:

(3.11) H i
ϕ,γK

(M) = lim−→
n

H i
ϕ,γK

(t−nD)

where H i
ϕ,γK

(t−nD) is the cohomology of the (ϕ,ΓK)-module t−nD over RK (which is
also given by (3.10), see [50]). In particular one has:
(3.12) H1

ϕ,γK
(M) = lim−→

n

H1
ϕ,γK

(t−nD) ' lim−→
n

Ext1
ΦΓ+

K
(RK , t

−nD) ' Ext1
ΦΓK (RK [1

t
],M)

where the second isomorphism is the usual explicit computation of extensions in terms
of 1-cocycles (see [21, Lem.2.2]) and where the last isomorphism is easy to check. IfM
is in ΦΓA,K , the embedding RK [1

t
] ⊂ RA,K [1

t
] yields by pull-back a K-linear map:

(3.13) Ext1
ΦΓA,K (RA,K [1

t
],M) −→ Ext1

ΦΓK (RK [1
t
],M)

which is easily checked to be injective. By (3.12) any extension in Ext1
ΦΓK (RK [1

t
],M)

is given by a 1-cocycle in H1
ϕ,γK

(M), which in turn can be used to construct an explicit
extension in Ext1

ΦΓA,K (RA,K [1
t
],M) (arguing as in [21, Lem.2.2]). It follows that (3.13)

is surjective, hence is an isomorphism of K-vector spaces.
The functorM 7→ H0

ϕ,γK
(M) is left exact and we check using (3.11) thatH0

ϕ,γK
(RA,K [1

t
]) =

A⊗QpK. For any continous δ : K× → A×, by a dévissage on RA,K(δ)[1
t
] or RA,K(δ) and

the left exactness of H0
ϕ,γK

, (3.11) together with [45, Prop.6.2.8(1)] (see also [53, §2.3])
imply the following inequalities:
(3.14) dimK H

0
ϕ,γK

(RA,K(δ)) ≤ dimK H
0
ϕ,γK

(RA,K(δ)[1
t
]) ≤ dimK A⊗Qp K.

The following Lemma follows by induction from [2, Prop.2.14].

Lemma 3.3.3. Let k = (kτ )τ∈Σ ∈ Z[K:Qp]
≥0 , δ : K× → L× a continuous character and

j ∈ {0, 1}.
(i) If wtτ (δ) /∈ {1− kτ , . . . , 0} for each τ ∈ Σ we have Hj

ϕ,γK
(RL,K(δ)/tkRL,K(δ)) = 0.

(ii) If wtτ (δ) ∈ {1−kτ , . . . , 0} for each τ ∈ Σ we have dimLH
j
ϕ,γK

(RL,K(δ)/tkRL,K(δ)) =
[K : Qp].

Lemma 3.3.4. Let δi : K× → A× for i = 1, 2 be two continuous characters. If there is an
isomoprhism RA,K(δ1)[1

t
] ' RA,K(δ2)[1

t
], then the character δ2δ

−1
1 is a constant algebraic

character K× → L×.

Proof. We can twist by δ−1
1 and assume that δ1 is trivial, so that we have an isomorphism

RA,K [1
t
] ∼−→ RA,K(δ2)[1

t
]. The induced embedding RA,K ↪→ RA,K(δ2)[1

t
] factors through

t−kRA,K(δ2) for some integer k � 0. Consequently, replacing δ2 by δ2N
−k
K/Qp we can as-

sume that there exists an embeddingRA,K ↪→ RA,K(δ2) such thatRA,K [1
t
] ∼→ RA,K(δ2)[1

t
].

We deduce A ⊗Qp K ' H0
ϕ,γK

(RA,K) ↪→ H0
ϕ,γK

(RA,K(δ2)), and hence we obtain an
isomorphism H0

ϕ,γK
(RA,K) ∼→H0

ϕ,γK
(RA,K(δ2)) by (3.14). As A is a finite Qp-algebra, we

have RA,K = RK⊗QpA. Consequently RA,K and RA,K(δ2) are free A-modules, RA,K is a
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direct factor ofRA,K(δ2) as an A-module and hence A/mA⊗ARA,K ↪→ A/mA⊗ARA,K(δ2)
which implies that δ2 modulo mA is an algebraic character η = ∏

τ τ
−kτ : K× → L× for

some k = (kτ )τ ∈ Z[K:Qp]
≥0 . Let D := tkRA,K(δ2) ⊆ RA,K(δ2). We have H0

ϕ,γK
(D) ⊆

H0
ϕ,γK

(RA,K(δ2)). As wtτ (δ2 modulo mA) = −kτ , by (i) of Lemma 3.3.3 and a dévissage
on A using the left exactness of H0

ϕ,γK
we obtain H0

ϕ,γK
(RA,K(δ2)/D) = 0, so that:

H0
ϕ,γK

(D) = H0
ϕ,γK

(RA,K(δ2)) = H0
ϕ,γK

(RA,K).
As H0

ϕ,γK
(RA,K) contains a generator of RA,K , we obtain RA,K ⊆ D as RA,K-submodules

of RA,K(δ2). But RA,K and D are two isocline (ϕ,ΓK)-modules over RK with the same
rank and the same slope, hence they are equal (see for example [44, Th.1.6.10]) and thus
δ2 = η by [45, Lem.6.2.13]. �

Recall from [6, Prop.2.2.6(2)] that there exists a covariant functor W+
dR from the cat-

egory of (ϕ,ΓK)-modules over RK to the category of B+
dR-representations of GK (see the

proof of Lemma 3.3.5 below for details on its definition). LetM be a (ϕ,ΓK)-module over
RK [1

t
] and D ⊂M a (ϕ,ΓK)-submodule such thatM = D[1

t
]. Then it is easily checked

that WdR(M) := BdR ⊗B+
dR
W+

dR(D) does not depend on the choice of D and defines a
functor WdR from the category of (ϕ,ΓK)-modules over RK [1

t
] to the category of BdR-

representations of GK . Moreover the functoriality of the construction in loc.cit. implies
that if D (resp. M) is a (ϕ,ΓK)-module over RA,K (resp. RA,K [1

t
]), then W+

dR(D) (resp.
WdR(M)) has a natural structure of an A⊗Qp B+

dR-module (resp. A⊗Qp BdR-module).
Lemma 3.3.5. (i) Let D be a (ϕ,ΓK)-module of rank n over RA,K. Then W+

dR(D)
is a finite free A ⊗Qp B+

dR-module of rank n. In particular W+
dR(D) is an A ⊗Qp B+

dR-
representation of GK.
(ii) Let M be a (ϕ,ΓK)-module of rank n over RA,K [1

t
]. Then WdR(M) is a finite free

A ⊗Qp BdR-module of rank n. In particular WdR(M) is an A ⊗Qp BdR-representation of
GK.

Proof. We only prove (i), the proof of (ii) being totally analogous (note however that
we cannot directly deduce (ii) from (i) in general, see Remark 3.1.3). It follows from [6,
Prop.2.2.6] that the rank of W+

dR(D) over B+
dR is the same as the rank of D over RK .

Hence it is enough to prove that W+
dR(D) is a free A⊗Qp B+

dR-module. By the same kind
of argument as in the proof of Lemma 3.1.4 or Lemma 3.2.2, we see that it is sufficient to
prove thatW+

dR(D) is a flat A-module. This is shown in two steps. First we show that for
every A-moduleM of finite type, there is an A-linear isomorphism of B+

dR-representations
M⊗AW+

dR(D) ' W+
dR(M⊗AD), secondly we show that the functorW+

dR sends short exact
sequences of (ϕ,ΓK)-modules over RK to short exact sequences of B+

dR-representations.
The first point is a direct consequence of the fact that W+

dR commutes with finite direct
sums and sends right exact sequences to right exact sequences (this last fact following
from the very definition of W+

dR in [6, Prop.2.2.6(2)]). The second is contained in [52,
Th.1.36], but we briefly recall the argument. Let 0 → D1 → D2 → D3 → 0 be a short
exact sequence of (ϕ,ΓK)-modules over RK and let r ≥ max{r(Di), 1 ≤ i ≤ 3} where
r(Di) is defined in [5, Th.I.3.3]. For 1 ≤ i ≤ 3, let Dr

i be the Rr
K-submodule of Di defined

in [5, Th.I.3.3] where Rr
K is the ring B†,rrig,K of loc.cit. (recall that RK is denoted there

B†rig,K). Then W+
dR(Di) = B+

dR ⊗RrK D
r
i by [6, Prop.2.2.6(2)]. It easily follows from the

properties defining these Dr
i in loc.cit. and the fact that Rr

K is a Bezout ring that we
have a short exact sequence of free Rr

K-modules of finite type:
0 −→ Dr

1 −→ Dr
2 −→ Dr

3 −→ 0.
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In particular we have TorR
r
K

1 (B+
dR, D

r
3) = 0 and thus the short sequence:

0 −→ W+
dR(D1) −→ W+

dR(D2) −→ W+
dR(D3) −→ 0

is still exact. �

By [52, Th.1.36] (or the proof of Lemma 3.3.5) the functors D 7→ W+
dR(D), resp.

M 7→ WdR(M) send short exact sequences in ΦΓ+
K , resp. ΦΓK to short exact sequences

in RepB+
dR

(GK), resp. RepBdR
(GK).

If δ : K× → A× is a continuous character, we say that δ is smooth if wt(δ) = 0 and
locally Qp-algebraic, or more simply locally algebraic, if it is the product of a smooth
character and an algebraic character. Equivalently δ is locally algebraic if and only if
wtτ (δ) ∈ Z ⊂ A for all τ ∈ Σ.

Lemma 3.3.6. Let δ : K× → A× be continuous andM := RA,K(δ)[1
t
].

(i) Assume that δ := δ modulo mA : K× → L× is smooth. Then the BdR-representation
WdR(M) is almost de Rham and we have:

wt(δ) = νWdR(M) ∈ A⊗Qp K ' EndRepA⊗QpK
(Ga)(DpdR(WdR(M))).

(ii) More generally assume that δ is locally algebraic, then WdR(M) is almost de Rham
and we have wt(δ) = wt(δ) + νWdR(M) ∈ A⊗Qp K.

Proof. We can write δ = δ1δ2 where δ1, δ2 : K× → A× are two continuous characters such
that δ1 ◦ rec−1

K can be extended to a character of GK and δ2|O×K = 1. As W+
dR(D) doesn’t

depend on the Frobenius ϕ on the (ϕ,ΓK)-module D := RA,K(δ) (see [6, Prop.2.2.6(2)]),
it follows from the construction of D (see [45, §6.2.4]) thatWdR(M) ' WdR(RA,K(δ1)[1

t
])

(i.e. WdR(M) doesn’t depend on δ2). Since wt(δ1) = wt(δ), we can replace δ by δ1. The
BdR-representationWdR(M) is isomorphic to (A⊗QpBdR)(δ), i.e. we twist by δ the action
of GK on A ⊗Qp BdR. If δ ◦ rec−1

K is a de Rham character of GK , the BdR-representation
(L ⊗Qp BdR)(δ) is de Rham, hence almost de Rham, and thus (A ⊗Qp BdR)(δ) is almost
de Rham as an extension of almost de Rham representations (use a dévissage on A).
(i) Since the C-representation (A⊗Qp B+

dR)(δ)/t(A⊗Qp B+
dR)(δ) has all its Sen weights 0,

we have isomorphisms:
DpdR((A⊗QpBdR)(δ)) ∼← (B+

dR[log(t)]⊗B+
dR

(A⊗QpB+
dR)(δ))GK ∼→ (C[log(t)]⊗C(A⊗QpC)(δ))GK

in RepA⊗QpK
(Ga) (the nilpotent operator being defined everywhere analogously to the

one on DpdR and the second isomorphism following from an examination of the proof of
[32, Lem.3.14]). Sen’s theory shows that we also have an isomorphism in RepA⊗QpK∞

(Ga):

K∞ ⊗K (C[log(t)]⊗C (A⊗Qp C)(δ))GK ∼−→ ∆Sen((A⊗Qp C)(δ))
where the nilpotent operator on the right hand side is given by the Sen endomorphism
(see e.g. [32, §2.2] together with [32, Prop.2.8]). But we know that the Sen endomorphism
on ∆Sen((A⊗Qp C)(δ)) is just the multiplication by wt(δ) ∈ A⊗Qp K.

(ii) We can write δ = δ1δ2δ3 where δ1◦rec−1
K can be extended to GK , δ2 : K× → L× ⊆ A× is

constant such that δ2◦rec−1
K can be extended to a de Rham character of GK and δ3|O×K = 1.

We thus have WdR(M) ' WdR(RA,K(δ1δ2)[1
t
]) ∼= (A ⊗Qp BdR)(δ1δ2) ∼= (A ⊗Qp BdR)(δ1)

which is almost de Rham by (i). By (i) again, we also deduce νWdR(M) = wt(δ1) =
wt(δ)− wt(δ2) = wt(δ)− wt(δ). �
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Lemma 3.3.7. The BdR-representation WdR(RA,K(δ)[1
t
]) is trivial if and only if δ is

locally algebraic.

Proof. As in the proof of Lemma 3.3.6, we can write any δ as δ1δ2 where δ1 ◦ rec−1
K can

be extended to GK and δ2|O×K = 1 and we have WdR(RA,K(δ)[1
t
]) ∼= WdR(RA,K(δ1)[1

t
]) ∼=

(A⊗Qp BdR)(δ1). We have (A⊗Qp BdR)(δ1) ∼= A⊗Qp BdR if and only if δ1 is de Rham if
and only if δ1 is the product of a smooth character with an algebraic character (namely
(δ1δ

−1
1 )δ1). Since δ2 is smooth, this proves the statement. �

Definition 3.3.8. Let M be an object of ΦΓA,K and n ≥ 1 its rank. We say that M
is trianguline if M admits an increasing filtration M• = (Mi)i∈{1,...,n} by subobjects
in ΦΓA,K such that M1 and Mi/Mi−1 for i ∈ {2, . . . , n} are of character type. Such
a filtration M• is called a triangulation of M and, if Mi/Mi−1 ∼= RA,K(δi)[1

t
] where

δi : K× → A×, then δ := (δi)i∈{1,...,n} is called a parameter ofM•.

It follows directly from the definition that a triangulation ofM is a filtration by direct
factors of the RA,K [1

t
]-module M. We say that a parameter δ = (δi)i∈{1,...,n} is locally

algebraic if each δi is. If a triangulationM• admits a locally algebraic parameter, then
by Lemma 3.3.4 all parameters ofM• are locally algebraic.

FixM a trianguline (ϕ,ΓK)-module over RL,K [1
t
] together with a triangulationM• of

M. We define the groupoid XM,M• over CL as follows.

• The objects of XM,M• are quadruples (A,MA,MA,•, jA) where A is in CL,MA is
a trianguline (ϕ,ΓK)-module over RA,K [1

t
], MA,• a triangulation of MA and jA

an isomorphismMA⊗AL
∼−→M which induces isomorphismsMA,i⊗AL

∼−→Mi

for all i.
• A morphism (A,MA,MA,•, jA) −→ (A′,MA′ ,MA′,•, jA′) is a map A −→ A′ in CL
and an isomorphismMA⊗AA′

∼−→MA′ compatible (in an obvious sense) with the
morphisms jA, jA′ and with the triangulations, i.e. which induces isomorphisms
MA,i ⊗A A′

∼−→MA′,i for all i.

Denote by T the rigid analytic space over Qp parametrizing continuous characters
of K× and TL its base change from Qp to L. Fix a triple (M,M•, δ) where M is a
trianguline (ϕ,ΓK)-module of rank n ≥ 1 over RL,K [1

t
], M• a triangulation of M and

δ = (δ1, . . . , δn) with δi : K× → L× a parameter of M•. Note that we can see δ as
a continuous character (K×)n −→ L×, i.e. as an element of T nL (L). The functor of
deformations of δ, i.e. the functor:

A 7−→ {continuous characters δA = (δA,1, . . . , δA,n) : (K×)n → A×, δA,i modulo mA = δi ∀ i}

is pro-represented by the completion T̂ nδ of T nL at the point δ ∈ T nL (L). If A is in CL
and (MA,MA,•, jA) is an object of XM,M•(A), it follows from Lemma 3.3.4 that there
exists a unique character δA ∈ T̂ nδ (A) which is a parameter forMA,• and satisfies δA = δ
modulo mA. The map:

(A,MA,MA,•, jA) 7−→ (A, δA)

gives rise to a morphism ωδ : XM,M• −→ T̂ nδ of groupoids over CL. Note that, if δ′ is
another parameter ofM•, then δ′δ−1 is (constant) algebraic by Lemma 3.3.4 and we have
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an obvious commutative diagram:

(3.15)
XM,M•

T̂ nδ T̂ nδ′ .
×δ′δ−1

//

ωδ

yy

ωδ′

%%

We also define the groupoid XM over CL by forgetting everywhere the triangulations in
XM,M• (that is, we only consider deformations of the (ϕ,ΓK)-module M). We have a
“forget the triangulation” morphism XM,M• −→ XM of groupoids over CL.

FixM andM• as above, then by (ii) of Lemma 3.3.5 (with A = L) Fi := WdR(Mi)
for i ∈ {1, . . . , n} defines a filtration F• = (Fi)i∈{1,...,n} of W := WdR(M) in the sense of
Definition 3.1.8. Assume moreover that M• possesses a locally algebraic parameter. It
then follows from Lemma 3.3.6 that each BdR-representation Fi/Fi−1 is almost de Rham
and hence that W is also almost de Rham (as it is an extension of almost de Rham
BdR-representations). It moreover follows from (ii) of Lemma 3.3.5 that the functor WdR
defines a commutative diagram of morphisms of groupoids over CL:

XM,M•
//

��

XW,F•

��
XM // XW .

Now we fix an isomorphism α : (L ⊗Qp K)n ∼−→ DpdR(W ) as in §3.1, so that we
have the groupoids X�

W and X�
W,F• over CL (see §3.1). We define the fiber products of

groupoids over CL (see [49, §A.4] and §3.1):

X�
M := XM ×XW X�

W and X�
M,M• := XM,M• ×XW,F• X

�
W,F•

∼= XM,M• ×XW X�
W .

We fix a parameter δ = (δi)i∈{1,...,n} ofM•, for A ∈ CL the natural map:

(3.16) δA = (δA,i)i∈{1,...,n} 7−→ (wt(δA,i)− wt(δi)i∈{1,...,n}) ∈ (A⊗Qp K)n ∼= t̂(A)

induces a morphism of formal schemes wt−wt(δ) : T̂ nδ −→ t̂.

Corollary 3.3.9. The diagram of groupoids over CL:

XM,M•
//

ωδ
��

XW,F•

κW,F•
��

T̂ nδ
wt−wt(δ)

// t̂

is commutative.

Proof. This is a consequence of (3.4) and of (ii) of Lemma 3.3.6. �

From Corollary 3.3.9 we obtain a morphism of groupoids over CL:

(3.17) XM,M• −→ T̂ nδ ×̂t XW,F• .

Writing T ' Grig
m ×W where W is the rigid analytic space over Qp parametrizing con-

tinuous characters of O×K , we see that the right hand side of (3.17) is isomorphic to
Ĝn

m ×XW,F• (with obvious notation).
40



3.4. A formally smooth morphism. We prove that under certain genericity assump-
tions the morphism (3.17) is formally smooth.

We keep all the previous notation (in particular we assume from now on that L splits
K). Let A be in CL and M be an object of ΦΓA,K . Recall from §3.3 that we have
Ext1

ΦΓA,K (RA,K [1
t
],M) ' H1

ϕ,γK
(M). Moreover, if W is an almost de Rham A ⊗Qp BdR-

representation of GK , there are natural isomorphisms:
(3.18) Ext1

RepA,pdR(GK)(A⊗Qp BdR,W ) ' Ext1
RepA⊗QpBdR (GK)(A⊗Qp BdR,W ) ' H1(GK ,W )

where the last A⊗Qp K-module is usual continuous group cohomology, the first isomor-
phism comes from the fact that RepA,pdR(GK) is stable under extension in RepA⊗QpBdR

(GK)
and the second is the usual explicit description by 1-cocycles. In particular it follows
that the exact functorM 7−→ WdR(M) from ΦΓA,K to RepA⊗QpBdR

(GK) (see §3.3) gives
a functorial A⊗Qp K-linear map:

(3.19) H1
ϕ,γK

(M) ' Ext1
ΦΓA,K (RA,K [1

t
],M)

−→ Ext1
RepA⊗QpBdR (GK)(A⊗Qp BdR,W ) ' H1(GK ,WdR(M)).

Moreover the equivalence of categories DpdR of Proposition 3.1.1 between ReppdR(GK)
and RepK(Ga) induces functorial isomorphisms by an explicit computation:

H0(GK ,W ) ' HomReppdR(GK)(BdR,W ) ' ker(νW )
H1(GK ,W ) ' Ext1

ReppdR(GK)(BdR,W ) ' coker(νW )

where νW is the K-linear nilpotent endomorphism of DpdR(W ). In particular we see
the functor W 7−→ H1(GK ,W ) is right exact on ReppdR(GK). Since the functor W 7−→
H0(GK ,W ) is exact on the category of de Rham BdR-representations W of GK , it follows
that W 7−→ H1(GK ,W ) is also exact on the category of de Rham BdR-representations of
GK .

Lemma 3.4.1. Let δ : K× → L× be a continuous character such that δ and εδ−1 are
not algebraic. Let k = (kτ )τ ∈ Z[K:Qp]

≥0 .
(i) We have H0

ϕ,γK
(t−kRL,K(δ)) = H2

ϕ,γK
(RL,K(δ)) = 0.

(ii) If wtτ (δ) /∈ {1, . . . , kτ} for each τ ∈ Σ, then H1
ϕ,γK

(RL,K(δ)) −→ H1
ϕ,γK

(t−kRL,K(δ))
is an isomorphism.
(iii) If wtτ (δ) ∈ {1, . . . , kτ} for each τ ∈ Σ, then H1

ϕ,γK
(RL,K(δ)) −→ H1

ϕ,γK
(t−kRL,K(δ))

is the zero map.

Proof. From [53, Prop.2.10] (together with and [53, §5]), our general hypothesis on δ
implies (i) and also dimLH

1
ϕ,γK

(RL,K(δ)) = dimLH
1
ϕ,γK

(t−kRL,K(δ)) = [K : Qp] for any
k ∈ Z[K:Qp]. Then the result comes from the long exact cohomology sequence associated
to:

0 −→ RL,K(δ) −→ t−kRL,K(δ) −→ t−kRL,K(δ)/RL,K(δ) −→ 0.
together with Lemma 3.3.3 (replacing δ by z−kδ). �

Lemma 3.4.2. Let δ : K× → L× be a locally algebraic character such that δ and εδ−1

are not algebraic. Then the map in (3.19):
H1
ϕ,γK

(RL,K(δ)[1
t
]) −→ H1(GK ,WdR(RL,K(δ)[1

t
])) ' H1(GK , L⊗Qp BdR)

is an isomorphism.
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Proof. Replacing δ by z−kδ for some k ∈ Z[K:Qp]
≥0 we can assume wtτ (δ) ≤ 0 for all τ . Then

(ii) of Lemma 3.4.1 and (3.11) imply that the inclusion RL,K(δ) ⊂ RL,K(δ)[1
t
] induces

an isomorphism H1
ϕ,γK

(RL,K(δ)) ∼−→ H1
ϕ,γK

(RL,K(δ)[1
t
]). In particular we have

dimLH
1
ϕ,γK

(RL,K(δ)[1
t
]) = [K : Qp] (see the proof of Lemma 3.4.1). Lemma 3.3.7 implies

WdR(RL,K(δ)[1
t
]) ' L ⊗Qp BdR and it easily follows from [61, Th.1] and [61, Th.2] that

dimLH
1(GK , L⊗Qp BdR) = [K : Qp]. Thus it is enough to prove that the map:

(3.20) H1
ϕ,γK

(RL,K(δ)) −→ H1(GK ,WdR(RL,K(δ)))
is an isomorphism. Since these two L-vector spaces are both of dimension [K : Qp], it is
enough to prove that the kernel of (3.20) is zero.

Let W (δ) := (We(RL,K(δ)),W+
dR(RL,K(δ))) be the L-B-pair associated to RL,K(δ)

following [52, §1.4] (which generalizes [6]) and H1(GK ,W (δ)) the L⊗QpK-module defined
in [52, Def.2.1]. We have an isomorphism
(3.21) H1

ϕ,γK
(RL,K(δ)) ' H1(GK ,W (δ))

by [52, Prop.2.2(2)] together with [52, Th.1.36] (and the interpretation of H1
ϕ,γK

(D) as
extensions of RL,K by D). The kernel of H1(GK ,W (δ)) → H1(GK ,WdR(RL,K(δ))) is
denoted by H1

g (GK ,W (δ)) in [52, Def.2.4]. It follows from [52, Prop.2.11] that its
vanishing is equivalent to an isomorphism H1

e (GK ,W (δ−1ε)) ∼−→ H1(GK ,W (δ−1ε))
where H1

e (GK ,W (δ−1ε)) is defined in [52, Def.2.4], or equivalently to the vanishing of the
map (see [52, Def.2.1]):
(3.22) H1(GK ,W (δ−1ε)) −→ H1(GK ,We(RL,K(δ−1ε))).
However it follows from the definition of We(RL,K(δ−1ε)) (see [6, Prop.2.2.6(1)]) that it
only depends on RL,K(δ)[1

t
], hence we have for any k ∈ Z[K:Qp]

≥0 :
We(RL,K(δ−1ε)) = We(t−kRL,K(δ−1ε)) = We(RL,K(z−kδ−1ε))

and the map (3.22) factors as:

H1(GK ,W (δ−1ε)) −→ H1(GK ,W (z−kδ−1ε)) −→ H1(GK ,We(RL,K(z−kδ−1ε)))
∼= H1(GK ,We(RL,K(δ−1ε))).

As for the first isomorphism in (3.21), the first map is also:
H1
ϕ,γK

(RL,K(δ−1ε)) −→ H1
ϕ,γK

(RL,K(z−kδ−1ε)) ∼= H1
ϕ,γK

(t−kRL,K(δ−1ε))

which is zero by (iii) of Lemma 3.4.1 since we can choose k = (kτ )τ ∈ Z[K:Qp]
≥0 such that

kτ ≥ −wtτ (δ) + 1 for all τ (and recall wtτ (δ) ≤ 0 hence −wtτ (δ) + 1 ≥ 1). Thus (3.22)
is a fortiori zero. �

Lemma 3.4.3. Let A be an object of CL and let δ : K× → A× be a continuous character
such that δ and εδ−1 are not algebraic where δ := δ modulo mA.
(i) We have H0

ϕ,γK
(RA,K(δ)[1

t
]) = H2

ϕ,γK
(RA,K(δ)[1

t
]) = 0.

(ii) Assume moreover δ locally algebraic, then the map:
H1
ϕ,γK

(RA,K(δ)[1
t
]) −→ H1(GK ,WdR(RA,K(δ)[1

t
]))

is surjective.
(iii) Assume moreover δ locally algebraic, then the map:

H1
ϕ,γK

(RA,K(δ)[1
t
]) −→ H1(GK ,WdR(RA,K(δ)[1

t
]))

is an isomorphism.
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Proof. (i) Let M be a (ϕ,ΓK)-module over RL,K [1
t
] which is a successive extension of

(ϕ,ΓK)-modules isomorphic to RL,K(δ)[1
t
] (for instanceM = RA,K(δ)[1

t
]), then it follows

from (i) of Lemma 3.4.1 and the long exact cohomology sequence that H0
ϕ,γK

(M) =
H2
ϕ,γK

(M) = 0.
(ii) LetM as in (i). Since the functorWdR is exact and sinceWdR(M) is almost de Rham
(as it is an extension of almost de Rham BdR-representations), then it follows from (the
surjectivity in) Lemma 3.4.2, from the right exactness of the functor W 7−→ H1(GK ,W )
on ReppdR(GK) and from (i) that the map H1

ϕ,γK
(M) −→ H1(GK ,WdR(M)) is surjective.

(iii) The last statement follows from the dévissage in (ii) together with Lemma 3.4.2 and
the fact W 7−→ H1(GK ,W ) is exact on the category of de Rham BdR-representations of
GK . �

Denote by T0 ⊂ TL the subset which is the complement of the L-valued points zk, ε(z)zk

with k = (kτ )τ ∈ Z[K:Qp], and by T n0 the characters δ = (δ1, . . . , δn) such that δi/δj ∈ T0
for i 6= j. Equivalently T n0 ⊂ T nL is the complement of the characters (δ1, . . . , δn) such
that δiδ−1

j and εδiδ
−1
j are algebraic for i 6= j. Note that if a triangulation M• (on a

trianguline (ϕ,ΓK)-module of rank n ≥ 1 over RL,K [1
t
]) admits a parameter in T n0 (L),

then by Lemma 3.3.4 all parameters ofM• are in T n0 (L).
We can now prove the main result of this section.

Theorem 3.4.4. Let M be a trianguline (ϕ,ΓK)-module of rank n ≥ 1 over RL,K [1
t
],

M• a triangulation of M and δ = (δi)i∈{1,...,n} a parameter of M•. Assume that δ is
locally algebraic and that δ ∈ T n0 (L). Let W := WdR(M) and F• := WdR(M•). Then
the morphism:

XM,M• −→ T̂ nδ ×̂t XW,F•

of groupoids over CL in (3.17) is formally smooth.

Proof. Let A� B a surjective map in CL, xB = (MB,MB,•, jB) an object of XM,M•(B),
yB = (δB,WB,FB,•, ιB) its image in T̂ nδ ×̂tXW,F•(B). Let yA = (δA,WA,FA,•, ιA) be an ob-
ject of T̂ nδ ×̂tXW,F•(A) such that δA = δB modulo ker(A→ B) and B⊗A (WA,FA,•, ιA) '
(WB,FB,•, ιB). We will prove that there exists some object xA = (MA,MA,•, jA) in
XM,M•(A) whose image in XM,M•(B) is isomorphic to xB and whose image in T̂ nδ ×̂t

XW,F•(A) is isomorphic to yA. Write δA = (δA,1, . . . , δA,n) and δB = (δB,1, . . . , δB,n). By
induction on i we will construct (ϕ,ΓK)-modulesMA,i over RA,K [1

t
] such thatMA,i−1 ⊂

MA,i and isomorphisms RA,K(δA,i)[1
t
] ' MA,i/MA,i−1 with compatible isomorphisms

B ⊗AMA,i ' MB,i, WdR(MA,i) ' FA,i (compatible meaning with B ⊗A FA,i ' FB,i).
For i = 1 one can takeMA,1 := RA,K(δA,1)[1

t
]. For i ∈ {2, . . . , n} set:

Ext1
RepA⊗QpBdR (GK),i := Ext1

RepA⊗QpBdR (GK)

(
WdR(RA,K(δA,i)[1

t
]),FA,i−1

)
Ext1

RepB⊗QpBdR (GK),i := Ext1
RepB⊗QpBdR (GK)

(
WdR(RB,K(δB,i)[1

t
]),FB,i−1

)
Ext1

ΦΓB,K ,i := Ext1
ΦΓB,K (RB,K(δB,i)[1

t
],MB,i−1).
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Assuming thatMA,i−1 is known for a fixed i ≥ 2, the existence ofMA,i is then obviously
a consequence of the surjectivity of the map:

Ext1
ΦΓA,K (RA,K(δA,i)[1

t
],MA,i−1) WdR×B⊗A1−→

Ext1
RepA⊗QpBdR (GK),i×Ext1

RepB⊗QpBdR (GK ),i
Ext1

ΦΓB,K ,i

which itself follows by (3.12), (3.13) and (3.18) from the surjectivity of:

(3.23) H1
ϕ,γK

(MA,i−1(δ−1
A,i)) −→

H1
(
GK ,WdR(MA,i−1(δ−1

A,i))
)
×H1(GK ,WdR(MB,i−1(δ−1

B,i)))
H1
ϕ,γK

(MB,i−1(δ−1
B,i)).

For i 6= j, the characters δA,jδ−1
A,i satisfy the hypotheses of Lemma 3.4.3, consequently

Lemma 3.4.3 (both (i) and (ii) are needed) together with right exactness of the functor
W 7→ H1(GK ,W ) on the category ReppdR(GK) imply the surjectivity of the map:

H1
ϕ,γK

(MA,i−1(δ−1
i,A)) −→ H1(GK ,WdR(MA,i−1(δ−1

A,i))).

For WA in ReppdR,A(GK) we have an isomorphism DpdR(WA)⊗AB ' DpdR(WA⊗AB)
in RepB⊗QpK

(Ga) (see the proof of Lemma 3.1.4) from which it follows that coker(νWA
)⊗A

B = coker(νWA⊗AB) where νWA
(resp. νWA⊗AB) is the nilpotent endomorphism on

DpdR(WA) (resp. DpdR(WA⊗AB)). Since we have functorial isomorphismsH1(GK ,WA) '
coker(νWA

) of A⊗Qp K-modules, it follows that H1(GK ,WA)⊗A B ' H1(GK ,WA ⊗A B),
and in particular that H1(GK ,WdR(MA,i−1(δ−1

A,i)))⊗A B ' H1(GK ,WdR(MB,i−1(δ−1
B,i))).

If 0 →M1 →M →M2 → 0 is an exact sequence in ΦΓA,K such that H0
ϕ,γK

(Mi) =
H2
ϕ,γK

(Mi) = H0
ϕ,γK

(Mi ⊗A B) = H2
ϕ,γK

(Mi ⊗A B) = 0 and H1
ϕ,γK

(Mi) ⊗A B
∼→

H1
ϕ,γK

(Mi ⊗A B) for i ∈ {1, 2}, then the long exact cohomology sequence for H•ϕ,γK
and an easy diagram chase yield an isomorphism H1

ϕ,γK
(M) ⊗A B ∼→ H1

ϕ,γK
(M⊗A B).

By (i) of Lemma 3.4.3, H0
ϕ,γK

and H2
ϕ,γK

cancel RA,K(δA,jδ−1
A,i)[1

t
] and RB,K(δB,jδ−1

B,i)[1
t
]

for i 6= j, and more generally anyM which is a successive extension of RL,K(δjδ−1
i )[1

t
] for

i 6= j. By the same argument as in the first part of the proof of Lemma 3.1.4 using that
the functor H1

ϕ,γK
is then exact on the subcategory of such objectsM and commutes with

direct sums, we obtain isomorphisms H1
ϕ,γK

(MA,i−1(δ−1
A,i))⊗AB

∼−→ H1
ϕ,γK

(MB,i−1(δ−1
B,i))

(note thatMA,i−1(δ−1
A,i) is a successive extension of RA,K(δA,jδ−1

A,i)[1
t
] for j ≤ i− 1).

The surjectivity of the map (3.23) is then a consequence of Lemma 3.4.5 below applied
with M = H1

ϕ,γK
(MA,i−1(δ−1

A,i)) and N = H1(GK ,WdR(MA,i−1(δ−1
A,i))). �

Lemma 3.4.5. Let A be a ring, I ⊂ A some ideal and B := A/I. Let f : M � N be a
surjective A-linear map between two A-modules. Then the mapM −→ (M⊗AB)×N⊗ABN
sending m ∈M to (m⊗ 1, f(m)) is surjective.

Proof. Let P := ker(f), tensoring with B we obtain a short exact sequence P ⊗A B →
M⊗AB → N⊗AB → 0. Let (x, y) ∈ (M⊗AB)×N⊗ABN . There exists ỹ ∈M such that
f(ỹ) = y. Let u := x− ỹ ⊗ 1 ∈M ⊗A B. The image of u in N ⊗A B is zero, hence there
exists v ∈ P ⊗A B whose image in M ⊗A B is equal to u. Let ũ ∈ P ⊆M lifting v, then
ũ⊗ 1 = u in M ⊗A B. We have f(ỹ + ũ) = f(ỹ) = y and (ỹ + ũ)⊗ 1 = (x− u) + u = x
in M ⊗A B: this proves that ỹ + ũ ∈M maps to (x, y) ∈ (M ⊗A B)×N⊗AB N . �
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We say that a morphism X −→ Y of groupoids over CL is a closed immersion if it
is relatively representable ([49, Def.A.5.2]) and if, for any object y ∈ Y (Ay), the object
x ∈ X(Ax) representing the fiber product ỹ×Y X (see [49, §A.5] for the notation) is such
that the map Ay → Ax is a surjection in CL.

Proposition 3.4.6. LetM be a trianguline (ϕ,ΓK)-module of rank n ≥ 1 over RL,K [1
t
],

M• a triangulation of M and δ = (δi)i∈{1,...,n} a parameter of M•. Assume that δ ∈
T n0 (L), then the morphism XM,M• −→ XM of groupoids over CL is relatively representable
and is a closed immersion.

Proof. Since a triangulationMA,• deformingM• on a deformationMA ofM is unique
if it exists by a proof analogous to [1, Prop.2.3.6] (using (i) of Lemma 3.4.3), we have an
equivalence of groupoids over CL:
(3.24) XM,M•

∼−→ XM ×|XM| |XM,M•|.
A proof analogous to [1, Prop.2.3.9] but “inverting t everywhere” shows that the mor-
phism |XM,M•| −→ |XM| is relatively representable. This implies that the morphism
XM,M• −→ XM is relatively representable as well. The last statement follows easily
from this together with (3.24) and the fact that |XM,M•| is a subfunctor of |XM|. �

Lemma 3.4.7. LetM be a trianguline (ϕ,ΓK)-module of rank n ≥ 1 over RL,K [1
t
],M•

a triangulation ofM and δ = (δi)i∈{1,...,n} a locally algebraic parameter ofM• such that
δ ∈ T n0 (L). Let (A,MA,MA,•, jA) be an object of XM,M• and δA = (δA,i)i∈{1,...,n} as
before (3.15). Assume that the nilpotent endomorphism νWdR(MA) on DpdR(WdR(MA)) is
zero. Then we haveMA,i = ⊕ij=1RA,K(δA,j)[1

t
] for i ∈ {1, . . . , n} (i.e. the (ϕ,ΓK)-module

MA is “split”).

Proof. Since νWdR(MA) = 0, we have in particular wt(δA,i) = wt(δi) by Corollary 3.3.9
and (3.4), i.e. δA,i is locally algebraic for all i. The result then follows by dévissage from
Lemma 3.1.4 and (iii) of Lemma 3.4.3 (via (3.12), (3.13) and (3.18)). �

3.5. Trianguline (ϕ,ΓK)-modules over RK. We define and study some groupoids of
equal characteristic deformations of a (ϕ,ΓK)-module overRL,K with a triangulation over
RL,K [1

t
] and of an almost de Rham B+

dR-representation of GK with a filtration over BdR.
We keep the previous notation and fix a (ϕ,ΓK)-module D over RL,K . We define the

groupoid XD over CL of deformations of D exactly as we defined XM in §3.3 except
that we don’t invert t anymore (so objects are (ϕ,ΓK)-modules which are free of finite
type over RA,K and which deform D). We have an obvious morphism XD −→ XD[ 1

t
] of

groupoids over CL.
We first assume that W+

dR(D) is an almost de Rham B+
dR-representation of GK . By (i)

of Lemma 3.3.5 we also have a morphism XD −→ XW+
dR(D) of groupoids over CL and the

diagram:
XD

//

��

XW+
dR(D)

��
XD[ 1

t
]

// XWdR(D[ 1
t
])

is commutative. We thus have a morphismXD −→ XD[ 1
t
]×XWdR(D[ 1

t ])
XW+

dR(D) of groupoids
over CL.
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Proposition 3.5.1. The morphism XD −→ XD[ 1
t
]×XWdR(D[ 1

t ])
XW+

dR(D) is an equivalence.

Proof. This is essentially a consequence of Berger’s equivalence between (ϕ,ΓK)-modules
over RK and B-pairs ([6, Th.2.2.7]), once one knows that for A in CL there is a natural
equivalence of categories (which preserves the rank) between ΦΓA,K and the category of
A ⊗Qp Be-representations of GK where Be := Bϕ=1

cris , i.e. free A ⊗Qp Be-modules of finite
type with a continuous semi-linear action of GK .

First letM be a (ϕ,ΓK)-module overRK [1
t
] and setWe(M) := We(D) for any (ϕ,ΓK)-

submodule D ⊂ M such that M = D[1
t
] where We(D) is the Be-representation of GK

constructed in [6, Prop.2.2.6(1)], which does not depend on the choice of D inside M.
This defines a functor from ΦΓK to Be-representations of GK which preserves the rank.
To prove that this functor is an equivalence of categories, we construct a quasi-inverse
using [6]. If We is a Be-representation of GK , take any GK-stable B+

dR-lattice W+
dR inside

WdR := BdR ⊗Be We and let W be the B-pair (We,W
+
dR). Let D(W ) be the (ϕ,ΓK)-

modules over RK canonically associated to the B-pair W constructed in [6, §2.2]. It
follows from the construction in loc.cit. that M(We) := D(W )[1

t
] does not depend on

the choice of the lattice W+
dR inside WdR and thatM 7−→ We(M) and We 7−→ M(We)

are quasi-inverse functors.
Now it has to be checked thatM is free over RA,K [1

t
] if and only if We(M) is free over

A⊗Qp Be. But by an argument analogous to the one in the proof of Lemma 3.1.4 using
the exactness of the functors M 7−→ We(M) and We 7−→ M(We) (which itself easily
follows from the exactness of the functors D and W of [6, §2.2], see [52, Th.1.36]) and
the fact that they commute to direct sums, one is reduced to the case A = L which is in
[52, Th.1.36].

Finally it remains to be checked that if D is (ϕ,ΓK)-module with a morphism A →
EndΦΓ+

K
(D) and that We(D[1

t
]) is a finite free A ⊗Qp Be-module and W+

dR(D) is a finite
free A ⊗Qp B+

dR-module (necessarily of same rank), then D is a finite free RA,K-module.
As usual, using the exactness of the functor D 7→ (We(D),W+

dR(D)) we show that D
is a flat A-module and D/mAD is a finite free RL,K-module. Choose an isomorphism
Rn
L,K

∼−→ D/mAD and lift it to a morphism of RA,K-modules Rn
A,K → D. The result

follows from the two following facts: RA,K is a flat A-module (it is a free A-module since
RA,K = A ⊗Qp RK) and a map between two flat A-modules which is an isomorphism
modulo mA is an isomorphism (A is artinian so there exists m ≥ 0 such that mm

A = 0, if
f : M1 → M2 is such a morphism, its kernel and cokernel are A-modules N such that
N = mAN = mm

AN). �

Remark 3.5.2. By the argument at the end of the previous proof, one also sees that a
(ϕ,ΓK)-module D with an action of A is free over RA,K if and only if D[1

t
] is free over

RA,K [1
t
] and W+

dR(D) is free over A ⊗Qp B+
dR. Now ifM ∈ ΦΓA,K is such that WdR(M)

is almost de Rham, it follows from Remark 3.1.3 that WdR(M) contains an invariant
lattice W+

dR which is free over A⊗Qp B+
dR. The image of the B-pair (We(M),W+

dR) by the
functor D of [6, §2.2] is then a free RA,K-lattice ofM. In particular we deduce that any
suchM possesses a free RA,K-lattice stable by ϕ and ΓK .

We now assume that D is trianguline of rank n ≥ 1 (but don’t assume anything on
W+

dR(D) for the moment), see [16, §2.2] and references therein for the definition (due
to Colmez) of trianguline (ϕ,ΓK)-modules over RL,K . We let M := D[1

t
], M• =

(Mi)i∈{1,...,n} a triangulation of M and we define the fiber product of groupoids over
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CL (cf. §3.3):
XD,M• := XD ×XM XM,M• .

We assume moreover from now on that M• possesses a locally algebraic parameter.
We let W+ := W+

dR(D), W := WdR(M) = BdR ⊗B+
dR
W+ and F• = (Fi)i∈{1,...,n} :=

(WdR(Mi))i∈{1,...,n}. Then W (resp. W+) is an almost de Rham BdR-representation
(resp. B+

dR-representation) of GK , see the end of §3.3. Finally we fix an isomorphism
α : (L ⊗Qp K)n ∼−→ DpdR(W ). Recall we defined the following monoids over CL (and
many morphisms between them): XW , X�

W , XW,F• , X�
W,F• = XW,F• ×XW X�

W in §3.1,
XW+ , X�

W+ = XW+ ×XW X�
W in §3.2, X�

M = XM ×XW X�
W , X�

M,M• = XM,M• ×XW X�
W

in §3.3 and we have XD
∼= XM ×XW XW+ by Proposition 3.5.1 just above. We now use

them to define the following fiber products of groupoids over CL:
X�
D := XD ×XW X�

W X�
D,M• := XD,M• ×XD X�

D = XD,M• ×XW X�
W

XW+,F• := XW+ ×XW XW,F• X�
W+,F• := XW+,F• ×XW X�

W = XW+ ×XW X�
W,F• .

There are many natural (and more or less obvious) morphisms between all these groupoids
over CL that we don’t list. We recall that, in XD,M• and X�

D,M• (resp. XW+,F• and
X�
W+,F•), we do not deform a triangulation on D (resp. a filtration on W+), but rather

the triangulationM• (resp. the filtration F•) onM = D[1
t
] (resp. on W = W+[1

t
]).

We assume from now on thatM• moreover admits a parameter in T n0 (L).

Lemma 3.5.3. (i) The morphism XM −→ XW of groupoids over CL is relatively re-
presentable.
(ii) The morphism XM,M• −→ XW,F• of groupoids over CL is relatively representable.

Proof. We prove (i). We will use the equivalence between ΦΓA,K and the category of
A⊗Qp Be-representations of GK in the proof of Proposition 3.5.1. Let We := We(M) be
the L⊗Qp Be-representation of GK associated toM so that W ' BdR ⊗Be We. Fix ηA :=
(A,WA, ιA) an object of XW and denote by η̃A the groupoid over CL it represents. Then
for each A-algebra A′ in CL, the groupoid (η̃A×XWXM)(A′) is equivalent to the category of
(We,A′ , jA′ , ψA′) whereWe,A′ is an A′⊗QpBe-representation of GK , jA′ : We,A′⊗A′L

∼−→ We

and ψA′ : BdR ⊗Be We,A′
∼−→ WA ⊗A A′ is a compatible isomorphism with the reduction

maps 1 ⊗ jA′ and ιA ⊗ 1 to BdR ⊗Be We (we leave the morphisms to the reader). It is
equivalent to the category of free A′ ⊗Qp Be-submodules We,A′ ⊂ WA ⊗A A′ stable under
GK such that BdR ⊗Be We,A′

∼−→ WA ⊗A A′ and such that ιA ⊗ 1 induces an isomorphism
We,A′ ⊗A′ L

∼−→ We. On this description we see that all automorphisms in the category
η̃A ×XW XM are trivial, hence η̃A ×XW XM

∼−→ |η̃A ×XW XM|. But one can easily
check (on that description again) that the functor |η̃A ×XW XM| from CL to sets satisfies
Schlessinger’s criterion for representability ([56, Th.2.11], for the finite dimensionality of
the tangent space in loc.cit., use the above equivalence with ΦΓA′,K for A′ = L[ε] together
with a dévissage and the finite dimensionality of H1

ϕ,γK
(RL,K(δ)[1

t
]) for δ ∈ T0(L), see

Lemma 3.4.1 and its proof). Hence η̃A ×XW XM is representable. The proof of (ii) is
analogous by replacing everywhere modules by flags of modules. �

Corollary 3.5.4. The morphisms of groupoids X�
M,M• −→ X�

W,F•, XD,M• −→ XW+,F•
and X�

D,M• −→ X�
W+,F• are relatively representable.

Proof. The first one follows by base change from (ii) of Lemma 3.5.3. We have XD,M• =
XD ×XM XM,M•

∼= XW+ ×XW XM,M• by Proposition 3.5.1, and the morphism induced
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by base change from XM,M• −→ XW,F• :
XD,M• ' XW+ ×XW XM,M• −→ XW+ ×XW XW,F• = XW+,F•

is relatively representable by (ii) of Lemma 3.5.3. The �-version follows by base change
(−)×XW X�

W . �

We now moreover fix δ = (δi)i∈{1,...,n} ∈ T n0 (L) an arbitrary parameter ofM•.

Lemma 3.5.5. The morphism of formal schemes wt−wt(δ) : T̂ nδ −→ t̂ in (3.16) is
formally smooth of relative dimension n.

Proof. The morphism of schemes wt : T nL → t is easily checked to be smooth of relative
dimension n, and thus so is the morphism wt−wt(δ) : T nL → t. Thus the induced
morphism of formal schemes T̂ nδ −→ t̂ is formally smooth of relative dimension n. �

Corollary 3.5.6. The morphisms XM,M• −→ XW,F•, X�
M,M• −→ X�

W,F•, XD,M• −→
XW+,F• and X�

D,M• −→ X�
W+,F• of groupoids over CL are formally smooth.

Proof. The morphisms T̂ nδ ×̂tXW,F• −→ XW,F• and T̂ nδ ×̂tXW+,F• −→ XW+,F• are formally
smooth by base change from Lemma 3.5.5. The first statement follows then from Theorem
3.4.4 by composition of formally smooth morphisms. We have XD,M•

∼= XW+ ×XW
XM,M• , hence by base change from Theorem 3.4.4 the morphism:

XD,M• −→ (XW+ ×XW XW,F•) ×̂t T̂ nδ ∼= XW+,F• ×̂t T̂ nδ
is formally smooth. The third statement follows again by composition of formally smooth
morphisms. The proof of the �-versions follows by base change. �

Proposition 3.5.7. The groupoid X�
M,M• over CL is pro-representable. The functor

|X�
M,M•| is pro-representable by a formally smooth noetherian complete local ring of

residue field L and dimension [K : Qp](n2 + n(n+1)
2 ).

Proof. As X�
W,F• is pro-representable (Corollary 3.1.9), then so is X�

M,M• by Corollary
3.5.4, and thus also |X�

M,M• |. As X�
M,M• −→ X�

W,F• is formally smooth (Corollary 3.5.6),
then so is |X�

M,M•| −→ |X
�
W,F•|. As |X�

W,F•| is pro-representable by a formally smooth
local ring (Corollary 3.1.9), the same is thus true for |X�

M,M•|.
Using formal smoothness, for the last statement it is enough to compute the dimension

of the L-vector space |X�
M,M•|(L[ε]). This can be done using an other pro-representable

groupoid Xver
M,M• as follows. For 1 ≤ i ≤ n let βi : RL,K(δi)[1

t
] ∼−→Mi/Mi−1 be a fixed

isomorphism in ΦΓL,K and set β := (βi)1≤i≤n. Let Xver
M,M• be the following groupoid over

CL (of “rigidified deformations” of (M,M•, β)). If A is an object of CL, Xver
M,M•(A) is

the category of (MA,MA,•, ιA, βA) where (MA,MA,•, ιA) is an object of XM,M•(A) and
βA = (βA,i)1≤i≤n is a collection of isomorphisms βA,i : RA,K(δA,i)[1

t
] ∼−→ MA,i/MA,i−1

in ΦΓA,K where (δA,1, . . . , δA,n) is the character ωδ(MA,MA,•, ιA) ∈ T̂ nδ (A) (see §3.3,
morphisms of Xver

M,M•(A) are left to the reader). There is a natural forgetful morphism
Xver
M,M• −→ XM,M• of groupoids over CL which is easily checked to be formally smooth.

Moreover all automorphisms in the category Xver
M,M•(A) are trivial and thus Xver

M,M•
∼=

|Xver
M,M•|. Moreover, by an argument similar to the one for (ϕ,ΓK)-modules over RA,K in

the proof of [21, Th.3.3], |Xver
M,M• | is pro-representable by a formally smooth noetherian
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complete local ring of residue field L and dimension n+ [K : Qp]n(n+1)
2 . Finally consider

the (cartesian) commutative diagram of groupoids over CL:

Xver
M,M• ×XM,M•

X�
M,M•

//

��

X�
M,M•

��
Xver
M,M•

// XM,M• .

Since Xver
M,M• is pro-representable, it is easy to check that Xver

M,M• ×XM,M•
X�
M,M• is also

pro-representable (by adding formal variables corresponding to the framing) and that the
left vertical arrow is formally smooth of relative dimension n2[K : Qp]. The top horizontal
arrow is formally smooth of relative dimension n by base change. Set:

d := dimL |Xver
M,M• ×XM,M•

X�
M,M•|(L[ε]),

we thus have d = n2[K : Qp]+n+[K : Qp]n(n+1)
2 = n+dimL |X�

M,M•|(L[ε]) which implies
dimL |X�

M,M•|(L[ε]) = [K : Qp](n2 + n(n+1)
2 ). �

Now we let D• = (Di)i∈{1,...,n} := (DpdR(Fi))i∈{1,...,n} = (DpdR(WdR(Mi)))i∈{1,...,n}. It
is a complete flag of DpdR(W ). We assume moreover from now on that W+ is regular
(Definition 3.2.4). Recall then that we defined in (3.9) another complete flag:

FilW+,• = (FilW+,i(DpdR(W )))i∈{1,...,n}
of DpdR(W ) deduced from the filtration determined by the B+

dR-lattice W+ of W in
Proposition 3.2.1. Recall also that we fixed an isomorphism α : (L⊗QpK)n ∼−→ DpdR(W ).
We let x be the closed point of the L-scheme X = g̃ ×g g̃ of (2.3) corresponding to the
triple (α−1(D•), α−1(FilW+,•), NW ) (with the notation of §3.1).

Corollary 3.5.8. (i) The groupoid X�
W+,F• over CL is pro-representable. The functor

|X�
W+,F•| is pro-represented by the formal scheme X̂x.

(ii) The groupoid X�
D,M• over CL is pro-representable. The functor |X�

D,M•| is pro-
represented by a formal scheme which is formally smooth of relative dimension [K :
Qp]n(n+1)

2 over X̂x.

Proof. We prove (i). The second statement in (i) implies the first since in fact there is an
isomorphism X�

W+,F•
∼−→ |X�

W+,F•| as all automorphisms of an object of X�
W+,F•(A) are

trivial (see the discussion concerning X�
W in §3.1). We have X�

W+,F• = X�
W,F• ×X�

W
X�
W+

and the statement is proven as for Corollary 3.1.9 and Theorem 3.2.5. We prove (ii). As
X�
W+,F• is pro-representable by (i), then so is X�

D,M• by Corollary 3.5.4, and thus also
|X�

D,M• |. As the morphism X�
D,M• −→ X�

W+,F• is formally smooth by Corollary 3.5.6,
then so is the morphism |X�

D,M• | −→ |X
�
W+,F•|. The relative dimension of X�

D,M• −→
X�
W+,F• is the same as that of X�

M,M• −→ X�
W,F• (since it is obtained by base change

from it, see the proof of Corollary 3.5.4), which is [K : Qp]n(n+1)
2 by Corollary 3.1.9 and

Proposition 3.5.7. Whence the result by the last statement in (i). �

We denote by S ' S [K:Qp]
n the Weyl group of G (the notation W of §2.1 could now

induce some confusion with the representations W and W+ of §3.1 and §3.2). For w ∈ S
define Xw ⊂ X as in §2.2 and recall that X̂w,x is the completion of Xw at the closed
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point x = (α−1(D•), α−1(FilW+,•), NW ) ∈ X(L) (so X̂w,x is empty if x /∈ Xw(L) ⊂ X(L)).
Define the following groupoid over CL:

(3.25) X�,w
W+,F• := X�

W+,F• ×|X�
W+,F•

| X̂w,x.

Since we have an equivalence X�
W+,F•

∼−→ |X�
W+,F•| (see the proof of (i) of Corollary

3.5.8), it follows that we also have an equivalence X�,w
W+,F•

∼−→ |X�,w
W+,F•| of groupoids over

CL. Hence we deduce the following corollary from (i) of Corollary 3.5.8.

Corollary 3.5.9. For w ∈ S the groupoid X�,w
W+,F• over CL is pro-representable. The

functor |X�,w
W+,F•| is pro-represented by the formal scheme X̂w,x.

We define the groupoidXw
W+,F• over CL as the subgroupoid ofXW+,F• which is the image

of X�,w
W+,F• by the forgetful morphism X�

W+,F• −→ XW+,F• . So the objects of Xw
W+,F• are

those (A,W+
A ,FA,•, ιA) such that there exists αA : (A⊗QpK)n ∼−→ DpdR(W+

A [1
t
]) making

(A,W+
A ,FA,•, ιA, αA) an object of X�,w

W+,F•(A) and the morphisms (A,W+
A ,FA,•, ιA) −→

(A′,W+
A′ ,FA′,•, ιA′) are (A→ A′,W+

A ⊗AA′
∼→ W+

A′) where the isomorphism is compatible
with everything. Using the G-equivariance of Xw, we can easily check that it doesn’t
depend on the framing α and there is an equivalence of groupoids over CL:

(3.26) X�,w
W+,F•

∼−→ Xw
W+,F• ×XW+,F•

X�
W+,F• .

For w ∈ S, we then define:

X�,w
D,M• := X�

D,M• ×X�
W+,F•

X�,w
W+,F• and Xw

D,M• := XD,M• ×XW+,F•
Xw
W+,F• .

Proposition 3.5.10. The morphisms of groupoids Xw
W+,F• −→ XW+,F•, X

�,w
W+,F• −→

X�
W+,F•, X

w
D,M• −→ XD,M• and X�,w

D,M• −→ X�
D,M• are relatively representable and are

closed immersions.

Proof. The �-versions follow by base change from the others, and the third morphism is
obtained by base change from the first. Hence it is enough to check the first. Let ηA :=
(A,W+

A ,FA, ιA) an object of XW+,F• and η̃A the groupoid over CL that ηA represents. We
have to prove thatXw

W+,F•×XW+,F•
η̃A is representable and thatXw

W+,F•×XW+,F•
η̃A −→ η̃A

is a closed immersion.
Choose an object ξA = (A,W+

A ,FW , ιA, αA) in X�
W+,F• mapping to ηA and let ξ̃A be

the groupoid over CL that it represents. It is easy to check that forgetting the framing
actually yields an equivalence ξ̃A ∼−→ η̃A of groupoids over CL. By (3.26), we have that
X�,w
W+,F• ×X�

W+,F•
ξ̃A is isomorphic to Xw

W+,F• ×XW+,F•
ξ̃A ' Xw

W+,F• ×XW+,F•
η̃A. Hence

Xw
W+,F• ×XW+,F•

η̃A −→ η̃A is isomorphic to X�,w
W+,F• ×X�

W+,F•
ξ̃A −→ ξ̃A, and everything

then follows from (3.25). �

Let S(x) := {w ∈ S, x ∈ Xw(L)} = {w ∈ S, X̂w,x 6= ∅} = {w ∈ S, Xw
W+,F• 6= 0} =

{w ∈ S, Xw
D,M• 6= 0}.

Corollary 3.5.11. If w ∈ S(x), the functor X�,w
D,M• is pro-representable by a noetherian

complete local normal domain of residue field L and dimension [K : Qp](n2 + n(n+1)
2 )

which is formally smooth (as a formal scheme) over X̂w,x.
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Proof. The pro-representability ofX�,w
D,M• follows from Proposition 3.5.10 and (ii) of Corol-

lary 3.5.8. It follows by base change from Corollary 3.5.6 and from (ii) of Corollary 3.5.8
that X�,w

D,M• −→ X�,w
W+,F• is formally smooth of relative dimension [K : Qp]n(n+1)

2 , whence
the dimension since |X�,w

W+,F•| ' X̂w,x has dimension [K : Qp]n2. Recall that the local
rings of an algebraic variety are excellent and that the completion of a normal excellent
local domain is also a normal local domain ([37, Sch.7.8.3(v)] and [37, Sch.7.8.3(vii)]). In
particular, it follows from Theorem 2.3.6 that the local ring ÔXw,x underlying the formal
scheme X̂w,x is a complete local normal domain. So is any local ring which is formally
smooth over ÔXw,x . �

Recall from Lemma 2.5.1 that the irreducible components of T = t×t/S t are the Tw =
{(z,Ad(w−1)z), z ∈ t} for w ∈ S. The map (κ1, κ2) induces a morphism X̂x −→ T̂(0,0)

(resp. X̂w,x −→ T̂w,(0,0)) where T̂(0,0) (resp. T̂w,(0,0)) is the completion of T (resp. Tw) at
the point (0, 0). Denote by Θ the composition:

X�
D,M• −→ X�

W+,F•
∼−→ |X�

W+,F•|
∼−→ X̂x −→ T̂(κ1,κ2)(x) = T̂(0,0).

The same argument as in §3.1 and §3.2 for the morphisms κW,F• and κW+ shows that the
morphism Θ factors through a morphism still denoted Θ : XD,M• −→ T̂(0,0) of groupoids
over CL which doesn’t depend on any framing.

Corollary 3.5.12. Let w ∈ S(x) and w′ ∈ S, then the morphisms X�,w
D,M• ↪→ X�

D,M•−→
T̂(0,0) and Xw

D,M• ↪→ XD,M• −→ T̂(0,0) of groupoids over CL induced by Θ factor through
the embedding T̂w′,(0,0) ↪→ T̂(0,0) if and only if w′ = w.

Proof. Since Θ factors through XD,M• , by the commutative diagram:

X�,w
D,M•

//

��

X�
D,M•

//

��

T̂(0,0)

Xw
D,M•

// XD,M•
// T̂(0,0)

we see that it is enough to prove the first statement. By Corollary 3.5.11 and the definition
of Θ, it is enough to prove the same statement for X̂w,x and T̂(0,0), i.e. the composition of
the morphisms X̂w,x ↪→ X̂x −→ T̂(0,0) factors through T̂w′,(0,0) if and only if w′ = w. This
is Lemma 2.5.2. �

3.6. The case of Galois representations. We reconsider some of the previous groupoids
over CL when the (ϕ,ΓK)-module comes from a representation of GK and define a few
others.

Let r : GK → GLn(L) be a continuous morphism (where L is a finite extension that
splits K) and let V be the associated representation of GK (there should be no confusion
between this V and a generic object of RepBdR

(GK) which was denoted by V in §3.1).
Let Xr be the groupoid over CL of deformations of r and XV the groupoid over CL of
deformations of V . So the objects of Xr are the (A, rA : GK → GLn(A)) such that
composing with GLn(A) � GLn(L) gives r and the objects of XV are the (A, VA, jA)
where VA is a free A-module of finite rank with a continuous A-linear action of GK and
jA a GK-invariant isomorphism VA ⊗A L

∼−→ V . There is a natural morphism:
Xr −→ XV
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which is easily checked to be relatively representable, formally smooth of relative dimen-
sion n2. We let D := Drig(V ) be the (étale) (ϕ,ΓK)-module over RL,K associated to V
and we setM := D[1

t
]. By the argument of [1, Prop.2.3.13] the functor Drig induces an

equivalence XV
∼−→ XD.

Now we assume that V is a trianguline representation and fix a triangulation M• of
M as in §3.5. We define the following groupoids over CL: XV,M• := XV ×XD XD,M• and
Xr,M• := Xr ×XV XV,M• ' Xr ×XD XD,M• ' Xr ×XM XM,M• . The natural morphism of
groupoids over CL:

Xr,M• −→ XV,M•(3.27)
is formally smooth of relative dimension n2 by base change.

We assume moreover from now on that M• admits a locally algebraic parameter in
T n0 (L) and we define W+ := W+

dR(D) and W := W+[1
t
] (in particular W is almost de

Rham). Note that W+ = B+
dR ⊗Qp V and W = BdR ⊗Qp V . We also define F• and

D• as in §3.5. We fix a framing α : (L ⊗Qp K)n ∼−→ DpdR(W ) as in §3.5. We define
X�
V := XV ×XD X�

D
∼−→ X�

D, X�
r := Xr×XV X�

V , X�
V,M• := XV,M• ×XV X�

V and X�
r,M• :=

Xr,M• ×Xr X�
r . By base change X�

r −→ X�
V is formally smooth of relative dimension n2.

Since X�
D −→ XD is formally smooth of relative dimension [K : Qp]n2 (by base change

from X�
W −→ XW ), the same is true (by base change again) for X�

V −→ XV and X�
r −→

Xr. Note that X�
D, and hence X�

V , are pro-representable (use X�
D ' XM ×XW X�

W+ by
Proposition 3.5.1, and then Theorem 3.2.5 with (i) of Lemma 3.5.3).

Remark 3.6.1. Recall that the framing� inX�
V is not directly on the Galois deformation

VA, as is usual to do (e.g. in [49] or [17]) but only on DpdR(BdR ⊗Qp VA). The groupoid
over CL of usual framed deformations of V is precisely Xr, which is pro-representable by
the same argument as in [49, §8.1].

We assume moreover from now on that the almost de Rham L⊗Qp B+
dR-representation

W+ is regular (Definition 3.2.4) and define FilW+,• and x = (α−1(D•), α−1(FilW+,•), NW ) ∈
X(L) as in §3.5. We finally also define the following groupoids over CL: Xw

V,M• :=
XV ×XD Xw

D,M• (for w ∈ S), Xw
r,M• := Xr ×XV Xw

V,M• and their �-versions. We have a
cartesian commutative diagram of groupoids over CL:

X�
r,M•

//

��

Xr,M•

��
X�
V,M•

// XV,M•

(3.28)

where the vertical maps are formally smooth of relative dimension n2 (by base change)
and the horizontal maps are formally smooth of relative dimension [K : Qp]n2 (base
change again). We also have the w-analogue of (3.28) with the same properties. More-
over, because of the framing on r, all automorphisms in the categories Xr(A), Xr,M•(A),
X�
r (A), X�

r,M•(A), Xw
r,M•(A) and X�,w

r,M•(A) are trivial, hence all these groupoids over CL
are equivalent to their associated functor of isomorphism classes | |. We will tacitly use
this in the sequel.

Theorem 3.6.2. (i) The functor |Xr,M•| is pro-representable by a reduced equidimen-
sional local complete noetherian ring Rr,M• of residue field L and dimension n2 + [K :
Qp]n(n+1)

2 .
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(ii) For each w ∈ S(x), the functor |Xw
r,M• | is pro-representable by Rw

r,M• := Rr,M•/pw
where pw is a minimal prime ideal of Rr,M• and Rr,M•/pw is a normal local ring. More-
over the map w 7−→ pw is a bijection between S(x) and the set of minimal prime ideals
of Rr,M•.
(iii) The morphism |Xw

r,M•| −→ |X
w
V,M•| ↪→ |XV,M• | ' |XD,M•|

Θ−→ T̂(0,0) of groupoids
over CL factors through T̂w′,(0,0) ↪→ T̂(0,0) if and only if w′ = w.

Proof. By base change from Proposition 3.4.6 the morphism XD,M• −→ XD is rela-
tively representable, hence also XV,M• −→ XV , and by base change also Xr,M• −→ Xr.
Since Xr is pro-representable (see Remark 3.6.1), then Xr,M• , and thus |Xr,M•|, are
pro-representable. By Proposition 3.5.10 the morphism Xw

D,M• −→ XD,M• is relatively
representable and a closed immersion, hence also Xw

V,M• −→ XV,M• and by base change
also Xw

r,M• −→ Xr,M• . Since Xr,M• is pro-representable, we deduce that Xw
r,M• is pro-

representable by a complete local ring which is a quotient of the one representing Xr,M• .
Moreover it follows from their definition that the local complete ring representing the func-
tor |X�

r,M•| is a formal power series ring over the one representing the functor |Xr,M•|, and
likewise with |X�,w

r,M•| and |Xw
r,M•| by base change using (3.26). The remaining assertion

in (i) follows from this, the formal smoothness of X�
r,M• −→ X�

V,M• , (ii) of Corollary 3.5.8
and the properties of X̂x (see e.g. the proof of Lemma 2.5.2). Likewise (ii) follows from
this, the formal smoothness of X�,w

r,M• −→ X�,w
V,M• , Corollary 3.5.11 and the properties of

X̂w,x (see the proof of Corollary 3.5.11). Finally we prove (iii). Since Θ : XD,M• −→ T̂(0,0)
factors through |XD,M•|, it is enough to prove the same statement without the | |. This
follows from Corollary 3.5.12 and the formal smoothness of Xw

r,M• −→ Xw
V,M• . �

For w ∈ S recall that TXw,x = X̂w,x(L[ε]) is the tangent space of Xw at the point x.

Corollary 3.6.3. For w ∈ S(x) we have:

dimLX
w
r,M•(L[ε]) = n2 − [K : Qp]n2 + [K : Qp]

n(n+ 1)
2 + dimL TXw,x.

Proof. The morphism X�,w
D,M• −→ X�,w

W+,F•
∼−→ X̂w,x is formally smooth of relative dimen-

sion [K : Qp]n(n+1)
2 by base change from the morphism X�

D,M• −→ X�
W+,F• and Corollary

3.5.8. Hence dimLX
�,w
V,M•(L[ε]) = [K : Qp]n(n+1)

2 + dimL TXw,x. Since dimLX
w
r,M•(L[ε]) =

dimLX
�,w
r,M•(L[ε])− [K : Qp]n2 = n2 + dimLX

�,w
V,M•(L[ε])− [K : Qp]n2 by the w-analogue

of (3.28), we obtain the result. �

We let wx ∈ S measuring the relative position of the two flags of (L⊗QpK)n α' DpdR(W )
given by α−1(D•) and by α−1(FilW+,•). More precisely wx is the unique permutation in
S such that the pair of flags (α−1(D•), α−1(FilW+,•)) on (L⊗Qp K)n is in the G-orbit of
(1, wx) in G/B ×L G/B. It doesn’t depend on the choice of α.

Proposition 3.6.4. If w ∈ S(x), or equivalently Xw
r,M• 6= 0, then wx � w.

Proof. By definition of wx, we have x ∈ Vwx (see the beginning of §2.2 for Vwx), hence
x ∈ Xw ∩Vwx by definition of S(x). The result then follows from Lemma 2.2.4 (and from
the w-analogue of (3.28) for the equivalence w ∈ S(x)⇔ Xw

r,M• 6= 0). �
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3.7. The trianguline variety is locally irreducible. We describe the completed local
rings of the trianguline variety Xtri(r) at certain points of integral weights in terms of
some of the previous formal schemes and derive important consequences on the local
geometry of Xtri(r) at these points.

We keep the previous notation. We denote by Treg ⊂ TL the Zariski-open complement
of the L-valued points z−k, ε(z)zk with k = (kτ )τ ∈ ZΣ

≥0, and T nreg for the Zariski-open
subset of characters δ = (δ1, . . . , δn) such that δi/δj ∈ Treg for i 6= j. Note that T n0 ( T nreg.

We fix a continuous representation r : GK → GLn(kL) and let Rr be the usual framed
local deformation ring of r, that is, the framing is on the GK-deformation. This ring was
denoted R�

r in [16, §3.2] and [17, §3.2], however we now drop the � in order to avoid any
confusion with the other kind of framing used here and already denoted � (see Remark
3.6.1). It is a local complete noetherian OL-algebra of residue field kL and we denote by
Xr := (Spf Rr)rig the rigid analytic space over L associated to the formal scheme Spf Rr.
Recall that Xtri(r) (denoted X�

tri(r) in loc.cit.) is by definition the rigid analytic space
over L which is the Zariski-closure in Xr × T nL of:

(3.29) Utri(r) := {points (r, δ) in Xr × T nreg such that r is trianguline of parameter δ}.

(we refer to [16, §2.2] for more details, note that being of parameter δ is here a different
(though related) notion than the one in Definition 3.3.8). The rigid space Xtri(r) is
reduced equidimensional of dimension n2+[K : Qp]n(n+1)

2 and its subset Utri(r) ⊂ Xtri(r) is
Zariski-open, see [16, Th.2.6]. As in [16, §2.2] we denote by ω′ the composition Xtri(r) ↪→
Xr × T nL � T nL (the letter ω being reserved for the weight map).

We fix x = (r, δ) = (r, (δi)i∈{1,...,n}) ∈ Xtri(r)(L) and let V , D,M as in §3.6.

Proposition 3.7.1. Assume that δ ∈ T n0 , then the (ϕ,ΓK)-moduleM over RL,K [1
t
] has

a unique triangulation of parameter δ.

Proof. It is sufficient to prove that the (ϕ,ΓK)-module Drig(V ) has a unique triangulation
whose parameter is of the form (δ′iδi)i∈{1,...,n} for some algebraic δ′i (see §3.3). The existence
is exactly the contents of [45, Th.6.3.13]. The unicity follows from the discussion just
before [45, Def.6.3.2] and from the Galois cohomology computations of [45, Prop.6.2.8]
(using the hypothesis δ ∈ T n0 ). These results can also be deduced from [51] or [1], see
e.g. the proof of Proposition 3.4.6. �

From now we assume that δ ∈ T n0 and we write M• for the triangulation given by
Proposition 3.7.1. Denote by r ∈ Xr the closed point corresponding to the morphism
r : GK → GLn(L). By [49, Lem.2.3.3 & Prop.2.3.5] there is a canonical isomorphism
of formal schemes between Xr and X̂r,r. Namely if A is in CL, a map SpA → X̂r,r is a
morphism SpecA → SpecRr[ 1

p
] sending the only point of SpecA to r, i.e. a continuous

morphism GK → GLn(A) such that the composition with GLn(A)→ GLn(L) is r, i.e. an
element of Xr(A). We thus deduce a morphism of formal schemes:

X̂tri(r)x −→ X̂r,r ' Xr.

Recall that Xr,M• → Xr is a closed immersion by base change from Proposition 3.4.6.

Proposition 3.7.2. The canonical morphism X̂tri(r)x −→ Xr factors through a mor-
phism X̂tri(r)x −→ Xr,M•.
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Proof. Let U be an affinoid neighbourhood of x in Xtri(r). Let DU be the universal
(ϕ,ΓK)-module over U (coming from the universal representation GK → GLn(Rr) via
U → Xr). Using [45, Cor.6.3.10], there exists a proper birational morphism of spaces
f : Ũ → U , an increasing filtration (Fi)i∈{0,...,n} of f ∗DU by R

Ũ ,K
-submodules stable

under ϕ and ΓK such that F0 = 0 and Fn = f ∗DU , invertible sheaves (Li)i∈{1,...,n} on Ũ
and injections:

Fi/Fi−1 ↪→ RŨ ,K
(δ
Ũ ,i

)⊗O
Ũ
Li

for i ∈ {1, . . . , n} (where the δ
Ũ ,i

: K× → Γ(Ũ ,O
Ũ

)× come from Ũ → U ⊆ Xtri(r) ω′−→
T nL ) whose cokernels are killed by some power of t and supported on a Zariski-closed
subset Z whose complement is Zariski-open and dense in Ũ . Let us fix a point x̃ over
x and V an affinoid neighbourhood of x̃ in Ũ over which all the sheaves Li are trivial.
Then for i ∈ {1, . . . , n} the RV,K [1

t
]-modules (Fi[1

t
]/Fi−1[1

t
])|V are free of rank 1. Let A

be in CL and SpA → V a morphism of rigid analytic spaces sending the only point of
SpA to x̃. By pullback along SpA → U → Xr, we obtain a deformation rA in Xr(A)
such that Drig(rA) ∼= A⊗Γ(V,OV ) Γ(V, f ∗DU). Moreover it follows from what preceeds that
(A⊗Γ(V,OV ) Γ(V, Fi)[1

t
])i∈{1,...,n} is a triangulationMA,• of Drig(rA)[1

t
] of parameter δA (see

above (3.15) for δA) corresponding to the map SpA→ V → U ⊆ Xtri(r) ω′−→ T nL . When
A = L, the triangulationML,• coincides withM• by Proposition 3.7.1. The morphism
sending an element of V̂x̃(A) to (rA,MA,•) clearly defines a morphism V̂x̃ −→ Xr,M• of
groupoids over CL fitting into the commutative diagram of pro-representable groupoids
over CL:

V̂x̃
//

f
��

Xr,M•� _

��
Ûx //

==

Xr.

In this diagram the left vertical arrow is dominant, i.e. (since Ûx = Spf S for a reduced
ring S) the induced map on the corresponding complete local rings is injective, and the
right vertical arrow is a closed immersion. This implies that the lower horizontal arrow
must factor through Xr,M• (as shown in the diagram). �

Proposition 3.7.3. The morphisms X̂tri(r)x −→ Xr,M• and X̂tri(r)x −→ Xr are closed
immersions of groupoids over CL (or of formal schemes since they are pro-representable).

Proof. It is enough to deal with the first morphism. It follows directly from the proof of
Proposition 3.7.2 that there is a commutative diagram:

X̂tri(r)x

ω′ ##

// Xr,M•

ωδ

��

T̂ nδ .

(3.30)

where ωδ stands for the composition Xr,M• −→ XV,M• ' XD,M• −→ XM,M•
ωδ−→ T̂ nδ

(see (3.15)). From the closed immersion of rigid spaces Xtri(r) ↪→ Xr ×L T nL and using
X̂r,r ' Xr we deduce a closed immersion of formal schemes X̂tri(r)x ↪→ Xr×LT̂ nδ . However
(3.30) together with Proposition 3.7.2 show that this closed immersion factors through:

X̂tri(r)x −→ Xr,M• −→ Xr ×L T̂ nδ
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where the right hand side is the morphism corresponding to the two morphisms Xr,M• ↪→
Xr and ωδ. This implies that the map X̂tri(r)x −→ Xr,M• is itself a closed immersion. �

We keep our fixed point x = (r, δ) ∈ Xtri(r)(L) and assume from now on that δ is locally
algebraic. We define W+ and W as in §3.6 and assume moreover that W+ is regular
(Definition 3.2.4). We write F• for the filtration on W deduced from the triangulation
M• and D• for the flag on DpdR(W ) deduced from the filtration F•. We also write
hτ,1 < · · · < hτ,n where the (hτ,i)τ∈Σ ∈ Z[K:Qp] ⊂ L[K:Qp] ∼= L ⊗Qp K for i ∈ {1, . . . , n}
are the Sen weights of r. It follows from [16, Prop.2.9] that {wtτ (δi), i ∈ {1, . . . , n}} =
{hτ,i, i ∈ {1, . . . , n}} for each τ ∈ Σ. This implies that, for each τ , there exists a
permutation wτ ∈ Sn such that (wtτ (δwτ (1)), . . . ,wtτ (δwτ (n))) = (hτ,1, . . . , hτ,n) ∈ Zn. We
define w := (wτ )τ∈Σ ∈ S.

We denote by ιx the closed immersion X̂tri(r)x ↪→ Xr,M• and by Θx : X̂tri(r)x −→ T̂(0,0)
the morphism of formal schemes which is the composition:

X̂tri(r)x
ιx
↪→ Xr,M• −→ XV,M•

∼= XD,M•
Θ−→ T̂(0,0).

Lemma 3.7.4. The morphism Θx factors through T̂w,(0,0) ↪→ T̂(0,0).

Proof. Denote by Θx,W,F• the composition:

X̂tri(r)x
ιx
↪→ Xr,M• −→ XV,M•

∼= XD,M• −→ XW+,F• −→ XW,F•
κW,F•−→ t̂

and by Θx,W+ the composition:

X̂tri(r)x
ιx
↪→ Xr,M• −→ XV,M•

∼= XD,M• −→ XW+,F• −→ XW+
κW+−→ t̂,

then by definition of Tw one has to show Θx,W+ = Ad(w−1)◦Θx,W,F• (recall that the action
of Ad(w−1) on t̂ gives Ad(w−1)((ν1,τ )τ∈Σ, . . . , (νn,τ )τ∈Σ) = ((νwτ (1),τ )τ∈Σ, . . . , (νwτ (n),τ )τ∈Σ)
if w = (wτ )τ∈Σ).

Let A be an object of CL, xA : Spf A → X̂tri(r)x some A-point of X̂tri(r)x and VA

the associated representation of GK via X̂tri(r)x → Xr → XV . Let (W+
A ,FA,•) be the

corresponding object of XW+,F•(A) (via the above morphism X̂tri(r)x −→ XW+,F•) and
set δA := ω′(xA) and yA := (WA,FA,•) ∈ XW,F•(A) where WA := W+

A [1
t
] = BdR ⊗Qp

VA. By Corollary 3.3.9, we have Θx,W,F•(xA) = κW,F•(yA) = wt(δA) − wt(δ). Moreover
Θx,W+(xA) = κW+(W+

A ) = κW+(B+
dR ⊗Qp VA) is the element (νA,1, . . . , νA,n) of (A ⊗Qp

K)n where the element νA,i = (νA,i,τ )τ ∈ A ⊗Qp K
∼→ ⊕τ∈ΣA is the action of νWA

on
FilW+

A ,i
(DpdR(WA))/FilW+

A ,i−1(DpdR(WA)) (see (3.9)). It follows from Lemma 3.7.5 below
that the polynomial:

n∏
i=1

(
Y − ((hτ,i + νA,i,τ )τ∈Σ)

)
∈ A⊗Qp K[Y ]

is the Sen polynomial of VA, i.e. the characteristic polynomial of the Sen endomorphism
on the finite free A⊗Qp K∞-module:

∆Sen(C ⊗Qp VA) = ∆Sen(W+
A /tW

+
A ) ' K∞ ⊗K DpHT(W+

A /tW
+
A )

(see the proof of Lemma 3.2.2 for DpHT). Then it follows from Lemma 3.7.6 below that
we have the following equality in A⊗Qp K[Y ] ' ⊕τ∈ΣA[Y ]:

n∏
i=1

(
Y − ((wtτ (δi)τ∈Σ + κW,F•(yA)i)

)
=

n∏
i=1

(
Y − ((hτ,i)τ∈Σ + κW+(W+

A )i)
)
.
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By Lemma 3.7.7 we conclude that there exists a unique element w′ := (w′τ )τ∈Σ ∈ S such
that

Ad(w′−1)
(
(wtτ (δ1))τ∈Σ + κW,F•(yA)1, . . . , (wtτ (δn))τ∈Σ + κW,F•(yA)n

)
=
(
(hτ,1)τ∈Σ + κW+(W+

A )1, . . . , (hτ,n)τ∈Σ + κW+(W+
A )n

)
.

Using unicity and reduction modulo mA, we see that w′ = w, which implies:
Ad(w−1)(Θx,W,F•(xA)) = Θx,W+(xA).

�

If A is in CL and W+
A is an almost de Rham A ⊗Qp B+

dR-representation of GK and
WA := W+

A [1
t
], recall from §3.2 (see especially the proof of Lemma 3.2.2) that there is a

functorial isomorphism in the category RepA⊗QpK
(Ga):

(3.31) DpHT(W+
A /tW

+
A ) '

⊕
i∈Z

griFil•
W+
A

(DpdR(WA)).

where griFil•
W+
A

(DpdR(WA)) = FiliW+
A

(DpdR(WA))/Fili+1
W+
A

(DpdR(WA)) and the action of Ga

on griFil•
W+
A

(DpdR(WA)) comes from the A⊗QpK-linear nilpotent operator gri(νWA
) induced

by νWA
(the equivariance for this Ga-action is not explicitly mentioned in loc.cit. but is

straightforward to check). The following lemma follows from (3.31) and the material in
[32, §§2.2,2.3].
Lemma 3.7.5. Let W+

A be an almost de Rham A ⊗Qp B+
dR-representation of GK. Then

the Sen polynomial of W+
A /tW

+
A in A ⊗Qp K[Y ] is equal to the product for i ∈ Z of the

characteristic polynomials of the endomorphisms −iId + gri(νWA
) of the free A ⊗Qp K-

modules griFil•
W+
A

(DpdR(WA)).

Lemma 3.7.6. With the notation in the proof of Lemma 3.7.4, the Sen polynomial of
VA is equal to ∏n

i=1(Y − wt(δA,i)) ∈ A⊗Qp K[Y ].

Proof. Using compatibility of the Sen polynomial with base change (see [22, Ex.4.8]), it
is sufficient to prove that the Sen polynomial of the universal Galois representation on
Xtri(r) (corresponding toXtri(r) −→ Xr) is equal to

∏n
i=1(Y−wt(δ̃i)) ∈ (Γ(Xtri(r),OXtri(r))⊗Qp

K)[Y ] with δ̃ = (δ̃1, . . . , δ̃n) the universal character onXtri(r) corresponding toXtri(r) −→
T nL . It is sufficient to check that the coefficients of both polynomial coincide on a
dense subset of points of Xtri(r) and it is a consequence of [16, Prop.2.9] (see also [45,
Lem.6.2.12]). �

Lemma 3.7.7. Let (a1, . . . , an) and (b1, . . . , bn) be in An. Assume that all the ai modulo
mA are pairwise distinct. If we have ∏n

i=1(Y − ai) = ∏n
i=1(Y − bi) in A[Y ], there exists a

permutation w ∈ Sn such that:
(3.32) (b1, . . . , bn) = (aw(1), . . . , aw(n)).

Proof. Reducing modulo mA and using the fact that L[Y ] is a factorial ring, we can choose
w such that (3.32) holds modulo mA, and replacing (a1, . . . , an) by (aw(1), . . . , aw(n)), we
can assume w = 1. Thus we have ai ≡ bi modulo mA for all i and we must prove
ai = bi for all i. Let j 6= i. As A is a local ring and ai − aj /∈ mA, bi − aj /∈ mA,
we have ∏j 6=i(ai − aj) ∈ A× and ∏

j 6=i(ai − bj) ∈ A×. Replacing Y by ai, we obtain
0 = (ai − bi)

∏
j 6=i(ai − bj) and finally ai = bi. �
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Corollary 3.7.8. The closed immersion ιx : X̂tri(r)x ↪→ Xr,M• induces an isomorphism
X̂tri(r)x

∼−→ Xw
r,M•.

Proof. By (i) of Theorem 3.6.2 we have Xr,M•
∼−→ |Xr,M•| ' Spf Rr,M• and we deduce

from Proposition 3.7.3 a closed immersion of affine schemes:

Spec ÔXtri(r),x ↪→ SpecRr,M• .

Moreover we know from [16, §2.2] and (i) of Theorem 3.6.2 that ÔXtri(r),x is reduced
equidimensional of the same dimension as Rr,M• , so that Spec(ÔXtri(r),x) is a union of
irreducible components SpecRw′

r,M• of SpecRr,M• for some w′ ∈ S (we use the notation
of (ii) of Theorem 3.6.2). Pick up such a w′ ∈ S, going back to formal schemes and using
(ii) of Theorem 3.6.2 we deduce a closed immersion Xw′

r,M• ↪→ X̂tri(r)x which, composed
with the morphism Θx, gives Xw′

r,M• −→ T̂w,(0,0) ↪→ T̂(0,0), where we have used Lemma
3.7.4. But (iii) of Theorem 3.6.2 then implies w′ = w, which finishes the proof. �

Remark 3.7.9. We recall our assumptions on the point x = (r, δ) = (r, (δ1, . . . , δn)) ∈
Xtri(r)(L): δ is locally algebraic, δiδ−1

j and εδiδ
−1
j are not algebraic for i 6= j and the

τ -Sen weights of the GK-representation V associated to r are distinct for each τ ∈ Σ. In
particular it follows from Remark 4.2.2 below that these assumptions are always satisfied
when V is crystalline with distinct Hodge-Tate weights for each embedding τ and the
eigenvalues (ϕ1, . . . , ϕn) ∈ Ln of ϕ[K0:Qp] on Dcris(V ) (where ϕ is the crystalline Frobenius
on Dcris(V )) are such that ϕiϕ−1

j /∈ {1, p[K0:Qp]} for i 6= j.

Let x = (r, δ) as in Remark 3.7.9. Keeping all the previous notation, the following
big commutative diagram of formal schemes over L, or alternatively of pro-representable
groupoids over CL, contains most of what has been done in §3:
(3.33)
X̂tri(r)x

∼ // Xw
r,M•� _

��

X�,w
r,M•� _

��

oo // X�,w
V,M•

∼ //
� _

��

X�,w
D,M•� _

��

// X�,w
W+,F•� _

��

∼ // X̂w,xpdR� _

��

Xr,M•� _

��

X�
r,M•� _

��

oo // X�
V,M•

∼ //
� _

��

X�
D,M•� _

��

// X�
W+,F•

∼ // X̂xpdR

Xr X�
r

oo // X�
V

∼ // X�
D.

where xpdR := (α−1(D•), α−1(FilW+,•), NW ) ∈ Xw(L) (depending on the choice of an iso-
morphism α : (L⊗QpK)n ∼−→ DpdR(BdR⊗Qp V )) and where all the horizontal morphisms
which are not isomorphisms are formally smooth, all vertical morphisms are closed im-
mersions and all squares are cartesian. Moreover the three horizontal formally smooth
morphisms on the left just come from adding formal variables due to the framing �.

From (ii) of Theorem 3.6.2, Proposition 2.3.3 and (3.33), we finally deduce the following
important corollary.

Corollary 3.7.10. Let x = (r, δ) ∈ Xtri(r) satisfying the assumptions of Remark 3.7.9,
then the rigid analytic space Xtri(r) is normal, hence irreducible, and Cohen-Macaulay at
x.
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4. Local applications

We derive several local consequences of the results of §2 and §3: further properties of
Xtri(r) around a point x as in Remark 3.7.9, existence of all local companion points when
r is crystalline and a combinatorial description in that case of the completed local ring
at x of the fiber of Xtri(r) over the weight map.

4.1. Further properties of the trianguline variety. We prove several new geometric
properties of Xtri(r) around a point x satisfying the assumptions of Remark 3.7.9.

We keep the notation of §3.7. If x ∈ Xtri(r) satisfies the conditions of Remark 3.7.9,
recall we have associated to x two permutations in S ' S [K:Qp]

n : the permutation wx
defined just before Proposition 3.6.4 and the permutation w defined just before Lemma
3.7.4.

Recall also that the map ω′ : Xtri(r) −→ T nL is smooth on the Zariski-open Utri(r) ([16,
Th.2.6(iii)]) but can be ramified in general (as follows from [2, Th.B]). The following
proposition is one more property of the map ω′.

Proposition 4.1.1. Let x = (r, δ) ∈ Xtri(r) satisfying the assumptions of Remark 3.7.9,
then the morphism ω′ is flat in a neighbourhood of x.

Proof. Increasing L if necessary, we can assume x ∈ Xtri(r)(L). We use the notation of
§3. By base change from Theorem 3.4.4 using Proposition 3.5.1, the morphism of formal
schemes X�,w

D,M• −→ T̂ nδ ×̂t X
�,w
W+,F• is formally smooth, hence by Corollary 3.5.9 and

(3.28) so is X�,w
r,M• −→ T̂ nδ ×̂t X̂w,xpdR where xpdR = (α−1(D•), α−1(FilW+,•), NW ) ∈ Xw(L)

(depending on some choice of α). Since the morphism of schemes κ1,w : Xw −→ t is flat
by Proposition 2.3.3, it remains so after completion, and we deduce that the morphisms
of formal schemes T̂ nδ ×̂t X̂w,xpdR −→ T̂ nδ and thus X�,w

r,M• −→ T̂ nδ are flat. Since this last
morphism factors through Xr,M• (see the definition of ωδ just above (3.15)), we have a
commutative diagram of formal schemes (whose underlying topological spaces are just
one point):

Xw
r,M•

##

X�,w
r,M•

oo

��

T̂ nδ
and where the horizontal morphism is formally smooth (see the w-analogue of (3.28)).
Looking at the map induced by this horizontal morphism on the underlying complete
local rings, it is formally smooth, hence flat, hence faithfully flat (since it is a flat local
map between local rings). Together with the flatness of X�,w

r,M• −→ T̂ nδ , it is then straight-
forward to check that the morphism of formal schemes Xw

r,M• −→ T̂ nδ is also flat (use that
C⊗BM = 0⇔M = 0 if B → C is a faithfully flat morphism of commutative rings). We
thus obtain that X̂tri(r)x

ω′−→ T̂ nδ is flat by Corollary 3.7.8 and (3.30). Looking again at
the underlying complete local rings and using that completion of noetherian local rings
at their maximal ideal is a faithfully flat process, we deduce in the same way as above
that the morphism of local rings OT nL ,δ −→ OXtri(r),x is also flat, i.e. that the morphism
of rigid spaces ω′ : Xtri(r) −→ T nL is flat at x, and hence in an affinoid neighbourhood of
x (flatness on rigid spaces being an open condition). �
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Remark 4.1.2. We see from (3.33) and the argument at the beginning of the proof of
Proposition 4.1.1 that we have:

X̂tri(r)x X�,w
r,M•

oo //
� _

��

T̂ nδ ×̂t X̂w,xpdR� _

��

X�
r,M•

// T̂ nδ ×̂t X̂xpdR

where the horizontal morphisms are formally smooth, the vertical ones are closed immer-
sions and the square is cartesian.

Recall that W is the rigid analytic space over Qp parametrizing continuous characters
of O×K . Let WL be its base change from Qp to L and let ω : Xtri(r) ω′−→ T nL �Wn

L where
the last morphism is restriction (of characters) to O×K . Note that, arguing as just after
(3.17), Proposition 4.1.1 implies that ω is also flat in a neighbourhood of x. For A in
CL we say that δ0 : O×K −→ A× is algebraic if it is the restriction to O×K of an algebraic
character of K× (cf. §3.3). Recall the following definition from [17, Def.2.11].

Definition 4.1.3. Let x ∈ Xtri(r) such that ω(x) is algebraic. We say that Xtri(r)
satisfies the accumulation property at x if, for any positive real number C > 0, the set of
crystalline strictly dominant points x′ = (r′, δ′) such that:

(i) the eigenvalues of ϕ[K0:Qp] on Dcris(r′) are pairwise distinct;

(ii) x′ is noncritical;

(iii) ω(x′) = δ′|(O×K)n = δk′ with k′τ,i−k′τ,i+1 > C for i ∈ {1, . . . , n−1}, τ ∈ Hom(K,L);

accumulate at x in Xtri(r) in the sense of [1, §3.3.1].

Proposition 4.1.4. Let x ∈ Xtri(r) satisfying the assumptions of Remark 3.7.9 and such
that ω(x) is algebraic, then Xtri(r) satisfies the accumulation property at x.

Proof. It follows from the above flatness of ω at x and [11, Cor.5.11] that there is an
affinoid neighbourhood U of x in Xtri(r) such that ω(U) is open in Wn

L. Since Utri(r)∩U
is Zariski-open and dense in U , it accumulates in U at any point of U , in particular at x.
Arguing as in the first half of the proof of [17, Prop.2.12] replacing V by Utri(r), and using
that U is locally irreducible at x by Corollary 3.7.10 and the fact that the normal locus
of an excellent ring is Zariski-open, we can then assume that x is moreover in Utri(r) and
that U ⊆ Utri(r). Then the result follows from [17, Lem.2.10] using that the algebraic
points of ω(U) satisfying the conditions of loc.cit. accumulate at ω(x) since ω(U) is open
in Wn

L. �

If w′ ∈ S, let dw′ ∈ Z≥0 be the rank of the Z-submodule of X∗(T ) (here T is the
split torus of G) generated by the w′(α)− α where α runs among the roots of G. Then
one easily checks that dw′ = dimL′ t(L′) − dimL′ t

w′(L′) = n[K : Qp] − dimL t
w′(L′) for

any extension L′ of L (see §2.5 for tw′). We have the following result which extends [17,
Th.1.3].

Proposition 4.1.5. Let x = (r, δ) ∈ Xtri(r) satisfying the assumptions of Remark 3.7.9
and such that r is de Rham.
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(i) We have dimk(x) TXtri(r),x = dimXtri(r)− [K : Qp]n2 + dimk(x) TXw,xpdR. In particular
the rigid analytic space Xtri(r) is smooth at x = (r, δ) if and only if the scheme Xw is
smooth at xpdR = (α−1(D•), α−1(FilW+,•), NW ) (which doesn’t depend on the choice of α
by G-equivariance of Xw).
(ii) We have:
dimk(x) TXtri(r),x ≤ dimXtri(r)−dwwx−1 +lg(wxw0)+dimk(x) TUw,π(xpdR)− [K : Qp]n(n−1).

In particular if π(xpdR) is a smooth point on Uw and if dwwx−1 = lg(w) − lg(wx) then
Xtri(r) is smooth at x.

Proof. Increasing L if necessary, we assume k(x) = L. (i) follows from Corollary 3.7.8
and Corollary 3.6.3 together with dimXtri(r) = n2 + [K : Qp]n(n+1)

2 and dimXw = [K :
Qp]n2. Since r is de Rham (which here is equivalent to r being crystabelline due to the
assumptions in Remark 3.7.9), the nilpotent endomorphism νW of W is 0 and we can
apply (i) of Proposition 2.5.3 which gives here:

dimL TXw,xpdR ≤ dimL TUw,π(xpdR) + n[K : Qp]− dwwx−1 + lg(wxw0).

This inequality plugged into the equality of (i) gives the inequality in (ii). The last
assertion in (ii) follows using dimUw = [K : Qp]n(n−1)

2 + lg(w) and lg(wxw0) = [K :
Qp]n(n−1)

2 − lg(wx). �

Remark 4.1.6. (i) The assumption on π(xpdR) in (ii) of Proposition 4.1.5 is always
satisfied when w = w0 (since in that case Uw0 = G/B × G/B is smooth), i.e. when x is
a strictly dominant point on Xtri(r) in the sense of [17, §2.1], and using dw0w

−1
x

= dwxw0

we have in that case:
(4.1) dimk(x) TXtri(r),x ≤ dimXtri(r)− dwxw0 + lg(wxw0).
The assumption dw0wx−1 = lg(w0) − lg(wx) = lg(w0w

−1
x ) is satisfied if and only if wx

is a product of distinct simple reflections (as follows from [17, lem.2.7]). Note that the
permutation wx, call it here wnew

x , is in fact not the same as the permutation also denoted
wx defined in [17, §2.3], call it wold

x . Indeed, unravelling the two definitions one can check
that wnew

x = wold
x w0. In particular the upper bound in (4.1) is exactly that of [17, Th.1.3].

(ii) Both assumptions on π(xpdR) and on dwwx−1 in (ii) of Proposition 4.1.5 are satisfied
when lg(w) − lg(wx) ≤ 2. The one on π(xpdR) follows from [10, Th.6.0.4] and [10,
Cor.6.2.11]. The one on dwwx−1 follows from writing w = sαwx (case lg(w)− lg(wx) = 1)
or w = sαsβwx (case lg(w) − lg(wx) = 2) where sα, sβ are (not necessarily simple)
reflections (see e.g. [41, §0.4]).
(iii) Assuming Conjecture 2.3.7 for w = w0, the inequality in (i) of Proposition 2.5.3 is an
equality for w = w0 (see Remark 2.5.4) which then implies that (4.1) is also an equality.
In particular Conjecture 2.3.7 implies [17, Conj.2.8].

4.2. Local companion points. For r a fixed crystalline sufficiently generic deformation
of r, we determine all the points of Xtri(r) with associated Galois representation r.

For h = (hτ,i) ∈ (Zn)[K:Qp], recall that zh is the character z 7→ ∏
τ∈Σ τ(z)hτ,i of (K×)n.

There is a natural action of S ' S [K:Qp]
n on (Zn)[K:Qp] : for w = (wτ )τ∈Σ ∈ S and h ∈

(Zn)[K:Qp], w(h) = (hτ,w−1
τ (i)). We fix x = (r, δ) = (r, (δi)i∈{1,...,n}) ∈ Xtri(r). We assume

r de Rham with distinct Hodge-Tate weights and denote by h = (hτ,1 < · · · < hτ,n)τ∈Σ
the Hodge-Tate weights of r. As in §3.7, by [16, Prop.2.9] there is w ∈ S such that
wt(δ) = w(h). We assume w = w0, i.e. x strictly dominant in the sense of [17, §2.1].
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Definition 4.2.1. A point x′ = (r, δ′) = (r, (δ′i)i∈{1,...,n}) ∈ Xtri(r) is called a companion
point of x = (r, (δi)i∈{1,...,n}) if δ′i/δi is algebraic for all i ∈ {1, . . . , n} (see §3.3).

By [16, Prop.2.9] again, if x′ = (r, δ′) is a companion point of x we see that there is
w′ ∈ S such that wtτ (δ′) = w′(h).

We now assume moreover that r is crystalline and as in Remark 3.7.9 we denote by
ϕ := (ϕ1, . . . , ϕn) ∈ k(x)n an ordering - also called refinement of r - of the eigenvalues
of ϕ[K0:Qp] on Dcris(r). With such a refinement, we can construct a smooth unramified
character of (K×)n by formula:

unr(ϕ) := (unr(ϕ1), . . . , unr(ϕn))
Then it follows from [17, Lem.2.1] that there exists a refinement ϕ such that we have
δ = zw0(h)unr(ϕ). Each companion point of x is of the form (r, zw(h)unr(ϕ)) for some
w = (wτ )τ ∈ S.

Remark 4.2.2. Denote by g : Xtri(r) −→ Xr̄ the canonical projection. It follows from
[17, (2.5)] and the line just after that for any refinement ϕ of r the point:

xϕ := (r, zw0(h)unr(ϕ))

is in Xtri(r) and from [45, Th.6.3.13] and the construction of Xtri(r) that the set {x ∈
Xtri(r) | g(x) = r} is exactly the union of the companion points of each xϕ for all possible
refinements ϕ of r.

We now assume moreover ϕiϕ−1
j /∈ {1, p[K0:Qp]} for i 6= j as in Remark 3.7.9. Recall

we have defined wx ∈ S just before Proposition 3.6.4 by the relation π(xϕ,pdR) ∈ Uwx .
The following theorem is a local analogue (i.e. on the local eigenvariety Xtri(r)) of [13,
Conj.6.6] which concerned companion points on the global eigenvarieties built out of
spaces of p-adic automorphic forms.

Theorem 4.2.3. The set of companion points of x = (r, δ) = (r, zw0(h)unr(ϕ)) is given
by: {

xw := (r, zw(h)unr(ϕ)), wx � w
}
.

Proof. Applying Corollary 3.7.8 and Proposition 3.6.4 (with L = k(x)) at the point xw
(assumed to be in Xtri(r)), we deduce the necessary condition wx � w. It is thus enough
to prove that all the points xw ∈ Xr × T nL for w � wx are actually in Xtri(r).

In [17, (2.9)] we have constructed a closed immersion of rigid spaces over L:

(4.2) ιh : X̃h−cr
r̄ ↪→ Xtri(r)

(the left hand side is denoted X̃�,h−cr
r̄ in loc.cit. but we drop the �, see Remark 3.6.1 and

the beginning of §3.7). Then (r, (ϕ1, . . . , ϕn)) ∈ X̃h−cr
r̄ and the construction of ιh implies

that this point is mapped to x ∈ Xtri(r). Arguing as in the proof of [17, Lem.2.4], there
exists a smooth Zariski-open and dense rigid subset W̃h−cr

r̄ of X̃h−cr
r̄ consisting of pairs

(ry, (ϕ1,y, . . . , ϕn,y)) such that the ϕi,y satisfy ϕi,yϕ−1
j,y /∈ {1, p[K0:Qp]} for i 6= j. As in the

proof of loc.cit. there is also a coherent locally free O
W̃h−cr
r̄
⊗Qp K0-module D on W̃h−cr

r̄

together with a linear automorphism Φ of D such that for all y ∈ W̃h−cr
r̄ :

(D,Φ)⊗O
W̃h−cr
r̄

k(y) = (Dcris(ry), ϕ[K0:Qp]).
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Moreover, locally on W̃h−cr
r̄ we can fix a basis e1, . . . , en of D such that the O

W̃h−cr
r̄
⊗QpK0-

submodule 〈e1, . . . , ei〉 is Φ-stable for all i and:

Φ(ei) = φiei modulo 〈e1, . . . , ei−1〉

where the φi ∈ O×
W̃h−cr
r̄

⊗1 ⊂ (O
W̃h−cr
r̄
⊗QpK0)×, i ∈ {1, . . . , n} correspond to the morphism

W̃h−cr
r̄ ↪→ X̃h−cr

r̄ −→ T rig
L with the notation of [17, §2.2]. By the argument in the proof of

[17, Lem.2.4], we have a smooth morphism of rigid spaces over L:

h : W̃h−cr
r̄ −→ (G/B)rig

(recall G = SpecL×SpecQp ResK/Qp(GLn/K)) mapping a crystalline representation of GK
to the Hodge filtration on Dcris written as in (3.9).

For w ∈ S, we write W̃h−cr
r̄,w ⊆ W̃h−cr

r̄ for the inverse image of the Bruhat cell (BwB/B)rig⊂
(G/B)rig under h. Then W̃h−cr

r̄,w is locally closed in W̃h−cr
r̄ and the W̃h−cr

r̄,w for w ∈ S set-
theoretically cover W̃h−cr

r̄ . From the definition of wx in §3.6 and the choice of the local
basis (ei)i above we easily check that:

(4.3) (r, (ϕ1, . . . , ϕn)) ∈ W̃h−cr
r̄,w ⇐⇒ w = wx.

If we denote by W̃h−cr
r̄,w the Zariski-closure of W̃h−cr

r̄,w in W̃h−cr
r̄ and by (BwB/B)rig that

of (BwB/B)rig in (G/B)rig, then we have h−1((BwB/B)rig) = W̃h−cr
r̄,w . Indeed, the in-

clusion W̃h−cr
r̄,w ⊆ h−1((BwB/B)rig) is clear. Conversely, let y ∈ h−1((BwB/B)rig) and

U an admissible open neighbourhood of y in W̃h−cr
r̄ , then h(U) is admissible open in

(G/B)rig since the map h is smooth hence open ([11, Cor.5.11]). Since h(y) ∈ h(U)
and h(y) ∈ (BwB/B)rig, then h(U) contains a point in (BwB/B)rig as the latter is
Zariski-open and dense in (BwB/B)rig. This implies U ∩ h−1((BwB/B)rig) = U ∩
W̃h−cr
r̄,w 6= ∅, from which it follows that y ∈ W̃h−cr

r̄,w since U is arbitrarily small, and
hence we have h−1((BwB/B)rig) ⊆ W̃h−cr

r̄,w . Then one easily checks from the usual de-
composition of (BwB/B)rig = (BwB/B)rig into Bruhat cells that (4.3) together with
h−1((Bw′B/B)rig) = W̃h−cr

r̄,w′ for w′ ∈ S imply:

(4.4) (r, (ϕ1, . . . , ϕn)) ∈ W̃h−cr
r̄,w ⇐⇒ w � wx.

Now, consider the following morphism of rigid spaces over L:

ιh,w : W̃h−cr
r̄ −→ Xr̄ × T nL(4.5)

(ry, (ϕ1,y, . . . , ϕn,y)) 7−→ (ry, zw(h)unr(ϕ1,y, . . . , ϕn,y)).

Then ι−1
h,w(Xtri(r)) is a Zariski-closed subset of W̃h−cr

r̄ . It is enough to prove that we have
an inclusion W̃h−cr

r̄,w ⊆ ι−1
h,w(Xtri(r)), or equivalently ιh,w(W̃h−cr

r̄,w ) ⊆ Xtri(r). Indeed, then
we also have W̃h−cr

r̄,w ⊆ ι−1
h,w(Xtri(r)), and since (r, (ϕ1, . . . , ϕn)) ∈ W̃h−cr

r̄,w when w � wx by
(4.4), we deduce xw = ιh,w((r, (ϕ1, . . . , ϕn))) ∈ Xtri(r). But we have ιh,w(W̃h−cr

r̄,w ) ⊆ Xtri(r)
since in fact we have ιh,w(W̃h−cr

r̄,w ) ⊆ Utri(r) (see (3.29) for Utri(r)). This follows from
the fact that, when (ry, (ϕ1,y, . . . , ϕn,y)) ∈ W̃h−cr

r̄,w , then zw(h)unr(ϕ1,y, . . . , ϕn,y) ∈ T nreg is
actually a parameter of ry (use Berger’s dictionnary between Dcris(ry) and Drig(ry) as in
the discussion preceding [17, Lem.2.4]). �
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Remark 4.2.4. A result analogous to Theorem 4.2.3 also holds assuming only that r
satisfies the assumptions in Remark 3.7.9 and is de Rham (which then implies it is in
fact crystabelline). We restrict ourselves above to the crystalline case for simplicity and
because this restriction is already in [17, §2] (that we use).

4.3. A locally analytic “Breuil-Mézard type” statement. We formulate a multi-
plicity conjecture which is analogous to [31, Conj.4.2.1] except that Xr is replaced by Xr

and Serre weights are replaced by irreducible constituents of locally Qp-analytic principal
series. We then prove the (sufficiently generic) crystalline case.

We keep the notation of §3.7 and fix a continuous r : GK → GLn(kL). For δ ∈ T nL
we denote by Xtri(r)δ := Xtri(r) ×T nL δ the fiber at δ of ω′ : Xtri(r) −→ T nL and by
Xtri(r)wt(δ) the fiber at wt(δ) ∈ trig of the composition Xtri(r) ω′−→ T nL

wt−→ trig (here wt
is defined similarly to (3.16) but without the translation by −wt(δ) and replacing the
artinian L-algebra A by an affinoid L-algebra A). We also denote by T nL,wt(δ) the fiber at
wt(δ) of T nL

wt−→ trig. If r ∈ Xr(L), we recall that the local complete noetherian L-algebra
ÔXr,r of residue field L and (equi)dimension n2 +[K : Qp]n2 represents the functor |Xr| of
framed deformations of r on local artinian L-algebras of residue field L (see the beginning
of §3.6 and §3.7). We denote by Z(Spec ÔXr,r) (resp. Zd(Spec ÔXr,r) for d ∈ Z≥0) the
free abelian group generated by the irreducible closed subschemes (resp. the irreducible
closed subschemes of codimension d) in Spec ÔXr,r. If A is a noetherian complete local
ring which is a quotient of ÔXr,r, we set:

[SpecA] :=
∑

p minimal prime of A
m(p, A)[SpecA/p] ∈ Z(Spec ÔXr,r)

where the sum is over the minimal prime ideals p of A, m(p, A) ∈ Z≥0 is the (finite) length
of Ap as a module over itself and [SpecA/p] is the irreducible component SpecA/p seen
in Z(Spec ÔXr,r).

Let us first start with some preliminaries which will also be used in §5.3. We let
r ∈ Xr(L) be a trianguline deformation with integral distinct τ -Sen weights for each τ ∈ Σ
and define V , D and M as in §3.6. We fix a triangulation M• of M which possesses
a parameter in T n0 . We define xpdR := (α−1(D•), α−1(FilW+,•), NW ) ∈ X(L) ⊆ X(L)
(depending on a choice of framing α) as just before Corollary 3.5.8 and wxpdR ∈ S =
S [K:Qp]
n as just before Proposition 3.6.4. We fix w ∈ S such that xpdR ∈ Xw(L) ⊆ Xw(L)

and a parameter δ = (δi)i∈{1,...,n} ∈ T n0 ofM• (δ is automatically locally algebraic). Note
that M• is the unique triangulation on M of parameter δ by Proposition 3.7.1. Going
back to the commutative diagram (3.33), it follows from Corollary 3.3.9 that we have a
commutative diagram of affine formal schemes over L:

Xw
r,M•� _

��

X�,w
r,M•� _

��

oo // X̂w,xpdR� _

��

Xr,M•� _

��

ωδ

##

X�
r,M•

oo // X̂xpdR

κ1

��

Xr T̂ nδ
wt−wt(δ)

// t̂
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where t̂ is the completion of t at 0 and where the two upper squares are cartesian. This
diagram induces another analogous commutative diagram with the Spec of the underlying
complete local rings instead of the formal schemes. Taking everywhere (except for Xr)
the fibers over 0 ∈ t(L) of this latter diagram and considering Remark 4.1.2, we obtain
the following commutative diagram:

(4.6)

SpecRw
r,M•� _

��

SpecR�,w
r,M•� _

��

oo // Spec ÔXw,xpdR� _

��

SpecRr,M•� _

��

SpecR�
r,M•

oo // Spec ÔX,xpdR

Spec ÔXr,r

where all the horizontal morphisms are formally smooth and where the two squares are
cartesian (as the vertical maps are closed immersions). Note that R�

r,M• (resp. R
�,w
r,M•) is

a formal power series ring over Rr,M• (resp. R
w

r,M•) and over ÔX,xpdR
(resp. ÔXw,xpdR

).

By the results of §§2.4, 2.5, the irreducible components of Spec ÔX,xpdR
are the union of

the irreducible components of Spec ÔZw′ ,xpdR for w′ ∈ S such that xpdR ∈ Zw′(L) (this last
condition doesn’t depend on the choice of the framing α). Likewise the irreducible compo-
nents of Spec ÔXw,xpdR

are the union of those of Spec ÔZw′ ,xpdR for w′ ∈ S such that w′ � w

and xpdR ∈ Zw′(L). By pull-back and smooth descent, we obtain from (4.6) a bijection
between the irreducible components of Spec ÔX,xpdR

(resp. Spec ÔXw,xpdR
) and the irre-

ducible components of SpecRr,M• (resp. SpecRw

r,M•). In particular SpecRr,M• is equidi-
mensional of dimension n2 + [K : Qp]n(n−1)

2 (equivalently of codimension [K : Qp]n(n+1)
2

in Spec ÔXr,r) and SpecRw
r,M• is a union of irreducible components of SpecRr,M• . For

w′ ∈ S, denote by Zw′ ∈ Z[K:Qp]n(n+1)
2 (Spec ÔXr,r) the cycle corresponding via the embed-

ding SpecRr,M• ↪→ Spec ÔXr,r to the cycle [Spec ÔZw′ ,xpdR ] in §2.5 under this bijection
and set as in (2.16):

(4.7) Cw′ :=
∑
w′′∈S

aw′,w′′Zw′′ ∈ Z[K:Qp]n(n+1)
2 (Spec ÔXr,r).

Note that the cycles Zw′′ and Cw′ do not depend on the choice of the framing α and, using
(3.15), depend on δ only via the RL,K(δi)[1

t
]. Since aw0,w′′ = 0 for w′′ 6= w0 (see the last

condition in (iii) of Theorem 2.4.7), we have Cw0 = Zw0 and since moreover Zw0 is smooth
(as it is isomorphic to G/B × G/B) we see that Zw0 = Cw0 is either 0 or irreducible. In
fact we have r de Rham (equivalently here r crystabelline) if and only if NW = 0 if and
only if xpdR ∈ Zw0(L) if and only if Zw0 = Cw0 6= 0.

Remark 4.3.1. We have a more precise description of Cw0 in the crystalline case at
least (which will be used in §5.3). Denote by X

wt(δ)−cr
r ⊂ Xr the closed analytic subspace

associated to (framed) crystalline deformations of r of fixed Hodge-Tate weights given by
wt(δ) and assume here that the fixed r is in X

wt(δ)−cr
r (L) ⊂ Xr(L). Since the underlying

nilpotent operator is identically 0 on Zw0 , any deformation in Xr,M•(A) ⊆ Xr(A) coming
from Ẑw0,xpdR(A) (for A in CL) is de Rham, hence crystalline due to the assumption r
crystalline and δ ∈ T n0 (by an easy exercise). This implies that Cw0 = Zw0 corresponds to
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an irreducible closed subscheme of Spec Ô
X

wt(δ)−cr
r

,r
of dimension n2 + [K : Qp]n(n−1)

2 . But
it follows from [48] that the scheme Spec Ô

X
wt(δ)−cr
r

,r
is already irreducible of dimension

n2 + [K : Qp]n(n−1)
2 . Hence we deduce in that case an isomorphism:

(4.8) Cw0
∼−→ [Spec Ô

X
wt(δ)−cr
r

,r
] ∈ Z[K:Qp]n(n+1)

2 (Spec ÔXr,r).

Corollary 4.3.2. With the notation as for (4.7) assume moreover that x := (r, δ) is in
Xtri(r)(L). Let M• be the unique triangulation of M = Drig(r)[1

t
] of parameter δ and

that w ∈ S is such that wt(δ) = w(h), then we have:

[Spec ÔXtri(r)wt(δ),x] =
∑
w′∈S

Pw0w,w0w′(1)Cw′ ∈ Z[K:Qp]n(n+1)
2 (Spec ÔXr,r).

Proof. This follows from Corollary 2.5.6, Corollary 3.7.8 and what is above, recalling that
the composition X̂tri(r)x ' Xw

r,M• −→ Xr,M•
ωδ−→ T̂ nδ is the morphism ω′ by (3.30). �

One can be a bit more precise. We have xpdR ∈ Zw′(L)⇒ xpdR ∈ Xw′(L)⇒ wxpdR � w′

(using Proposition 3.6.4 for the last implication). By (4.7) and the properties of the
integers aw′,w′′ (see (iii) of Theorem 2.4.7) we deduce Cw′ 6= 0 ⇒ Zw′′ 6= 0 for some
w′′ � w′ ⇒ wxpdR � w′′ ⇒ wxpdR � w′. Since moreover Pw0w,w0w′(1) 6= 0 ⇔ w′ � w, we
have in fact:

(4.9) [Spec ÔXtri(r)wt(δ),x] =
∑

wxpdR�w′�w
Pw0w,w0w′(1)Cw′ ∈ Z[K:Qp]n(n+1)

2 (Spec ÔXr,r)

and 0 < Cw′ ≤ [Spec ÔXtri(r)wt(δ),x] if and only if wxpdR � w′ � w. When r is moreover
de Rham (i.e. NW = 0), one can easily check using the usual description of the Zariski-
closure of Bruhat cells that we have equivalences (and not just implications) xpdR ∈
Zw′(L) ⇔ xpdR ∈ Xw′(L) ⇔ wxpdR � w′ and Zw′ 6= 0 ⇔ Cw′ 6= 0 ⇔ wxpdR � w′. In that
case, we see in particular that all terms in the sum (4.9) are actually nonzero.

After these preliminaries, we now move to our multiplicity conjecture.

Lemma 4.3.3. Let x = (r, δ) be any point of Xtri(r)(L) such that δ ∈ T n0 , then we have
closed immersions:

Spec ÔXtri(r)δ,x ↪→ Spec ÔXtri(r),x ↪→ Spec ÔXr,r.

Proof. The first closed immersion is obvious and the second is Proposition 3.7.3. �

When r ∈ Xr(L) is trianguline, we say that r is generic if all the parameters δ of r are
in T n0 . When r is crystalline with distinct Hodge-Tate weights for each τ ∈ Σ and the
ϕi are the eigenvalues of ϕ[K0:Qp] on Dcris(r), this amounts to the conditions on the ϕi in
Remark 3.7.9.

For δ = (δ1, . . . , δn) ∈ T nL (L), we consider the locally Qp-analytic principal series:

(4.10) Iδ :=
(
IndGLn(K)

B(K) δ1 ⊗ δ2ε⊗ · · · ⊗ δnεn−1
)an

where B(K) ⊂ GLn(K) is the subgroup of lower triangular matrices. Recall that Iδ is
the L-vector space of locally Qp-analytic functions f : GLn(K) −→ L such that:

f(udiag(t1, . . . , tn)g) = δ1(t1)(δ2(t2)ε(t2)) · · · (δn(tn)εn−1(tn))f(g)
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(where u is lower unipotent in B(K)) with the left action of GLn(K) by right translations
on functions f . It follows from the theory of [55] (together with the appendix of [13])
that the representation Iδ is topologically of finite length and that the multiplicities of its
(absolutely) irreducible constituants are a mixture of multiplicities coming from Verma
modules (i.e. Kazhdan-Lusztig multiplicities) and from smooth principal series. We
denote by Iss

δ its (topological) semi-simplification. If Π is an absolutely irreducible locally
Qp-analytic representation of GLn(K) over L, we denote by mδ,Π ∈ Z≥0 its multiplicity
in Iss

δ .
The following conjecture was inspired by [15], [34] and especially [31, Conj.4.2.1].

Conjecture 4.3.4. For any generic trianguline r ∈ Xr(L) and any absolutely irreducible
constituent Π of a locally Qp-analytic principal series of GLn(K) over L, there exists a
unique cycle Cr,Π in Z[K:Qp]n(n+3)

2 (Spec ÔXr,r) such that, for all δ ∈ T nL (L), we have:

[Spec ÔXtri(r)δ,(r,δ)] =
∑
Π
mδ,ΠCr,Π in Z[K:Qp]n(n+3)

2 (Spec ÔXr,r).

Remark 4.3.5. Conjecture 4.3.4 in particular implies that Spec ÔXtri(r)δ,(r,δ) is equidi-
mensional of dimension n2 + [K : Qp]n(n−3)

2 (if nonzero) when r ∈ Xr(L) is generic trian-
guline. Note that if the cycles Cr,Π are known for a given r (and all Π), then Conjecture
4.3.4 also tells exactly which points of the form (r, δ) are on Xtri(r).

Let δ ∈ T n0 be locally algebraic. We can write:
(δ1, δ2ε, . . . , δnε

n−1) = zλδsm

where λ ∈ (Zn)[K:Qp] and δsm is a smooth character. Then the representation Iδ is iso-
morphic to FGLn(K)

B(K) (U(g)⊗U(b) (−λ), δsm). The hypothesis δ ∈ T n0 implies that for every

parabolic subgroup P of GLn containing B, the smooth representation IndP (K)
B(K)(δsm)sm

is irreducible (see [8, Th.4.2]). This implies that, if (Mi)i is an ascending Jordan-
Hölder filtration of U(g)⊗U(b) (−λ), then (FGLn(K)

B(K) (Mi, δsm))i is a decreasing topological
Jordan-Hölder filtration of Iδ and the topologically irreducible subquotients of Iδ are the
FGLn(K)
B(K) (Mi/Mi−1, δsm).

Proposition 4.3.6. Assume r ∈ Xr(L) is generic trianguline with integral τ -Sen weights
for each τ ∈ Σ. If the cycles Cr,Π as in Conjecture 4.3.4 exist, then they are unique.

Proof. Writing δ = (δi)i∈{1,...,n}, it follows from [45, Th.6.3.13] that (r, δ) ∈ Xtri(r) implies
δ locally algebraic and δ ∈ T n0 . In particular if Π is a constituent of some Iss

δ where at
least one of the δi is not locally algebraic, then [Spec ÔXtri(r)δ,(r,δ)] = 0 and hence Cr,Π = 0.
We now use without comment the results of [54] as summarized (and slightly extended) in
[13, §2]. If Π is an irreducible constituent of some Iss

δ where δ is locally algebraic, one can
associate to Π the smallest length of such a Iss

δ . We proceed by induction on this length.
If Iss

δ = Π, i.e. Iss
δ has length 1, then we must have Cr,Π = [Spec ÔXtri(r)δ,(r,δ)]. In general,

we can always find δ ∈ T n0 locally algebraic such that Π ' socGLn(K)Iδ (use [12, Cor.2.5]).
Then we have [Spec ÔXtri(r)δ,(r,δ)] = Cr,Π+∑Π′ 6=Πmδ,Π′Cr,Π′ where the cycles Cr,Π′ are known
by induction using [41, Th.5.1], i.e. Cr,Π = [Spec ÔXtri(r)δ,(r,δ)]−

∑
Π′ 6=Πmδ,Π′Cr,Π′ . �

Remark 4.3.7. The same proof should work without assuming integrality of the Sen
weights of r, but this requires extending the results of [55] to the locally Qp-analytic
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setting (similar to what is done in the appendix of [12]). Though there is no doubt such
an extension is true, it is not written so far, and for that reason we refrain from stating
Proposition 4.3.6 in the general case.

We now fix r ∈ Xr(L) a trianguline deformation with integral distinct τ -Sen weights
for each τ ∈ Σ and we letM,M•, xpdR, wxpdR , w, δ as in the beginning of this section.
Taking the fibers over δ ∈ Spec ÔT n

L,wt(δ),δ
(L) in the commutative diagram (4.6) yields a

third diagram:

(4.11)

SpecR
w

r,M•� _

��

SpecR
�,w

r,M•� _

��

oo // Spec ÔXw,xpdR� _

��

SpecRr,M•� _

��

SpecR
�

r,M•
oo // Spec ÔX,xpdR

Spec ÔXr,r

where all horizontal morphisms are formally smooth, the two squares are cartesian and
R

�

r,M• (resp. R
�,w

r,M•) is a formal power series ring over Rr,M• (resp. R
w

r,M•). Using exactly
the same arguments as with (4.6), for w′ ∈ S we denote by Zw′ ∈ Z[K:Qp]n(n+3)

2 (Spec ÔXr,r)
the cycle corresponding, via the embedding SpecRr,M• ↪→ Spec ÔXr,r, to the cycle
[Spec ÔZw′ ,xpdR ] and we set as in (4.7):

(4.12) Cw′ :=
∑
w′′∈S

aw′,w′′Zw′′ ∈ Z[K:Qp]n(n+3)
2 (Spec ÔXr,r).

The cycles Zw′′ and Cw′ again do not depend on α and depend on δ only via theRL,K(δi)[1
t
]

(using (3.15)).
Denote by δ0 = (δ0,i)i∈{1,...,n} ∈ T n0 the unique element such that δ0,iδ

−1
i is algebraic for

all i ∈ {1, . . . , n} and wtτ (δ0,i) > wtτ (δ0,i+1) for all i ∈ {1, . . . , n − 1} and all τ ∈ Σ. It
follows from [41, §8.4] and [54] (with [13, §2]) that the irreducible constituents of Iδ0

are
parametrized by S in such a way that mδ0,Πw′ = P1,w0w′(1) where Πw′ is the constituent
associated to w′ ∈ S (recall that in Iδ0

we induce from the lower Borel). The cycle Cw′ a
priori depends on r,M• and w′. The following result shows that it depends on slightly
less.

Proposition 4.3.8. With the above notation, the cycle Cw′ only depends on r and on the
constituent Πw′.

Proof. We can choose the framing α such that the flag α−1(D•) on (L ⊗Qp
K)n α' DpdR(WdR(M)) is the standard one. For w′ ∈ S such that xpdR ∈ Zw′(L)
denote by Pw′ ⊆ G the maximal parabolic subgroup containing B such that w′w0 · 0 is
dominant with respect to Mw′ ∩ B where Mw′ is the Levi subgroup of Pw′ . Denote by
Sn,w′ ⊆ Sn the subgroup of permutations which, seen inside S = S [K:Qp]

n via the diagonal
embedding, belong to the Weyl group of Mw′ . Let us write δ0 = zλδsm with δsm a smooth
character. For an element w̃ ∈ Sn we denote by w̃(δsm) the smooth character defined by
w̃(δsm)i = δsm,w̃(i). By [12, Lem.6.2] we find that:

w̃ ∈ Sn,w′ ⇐⇒ 0 6= mδ0,w̃,Πw′ , where δ0,w̃ = zλ w̃(δsm).
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One easily checks that there is a partition n = n1 + · · · + nr of n by integers ni ≥ 1
such that Sn,w′ is the Weyl group of GLn1/L×GLn2/L× · · · × GLnr/L inside GLn/L. For
any reflection s in Sn,w′ the closed point xpdR,s := (sα−1(D•), α−1(FilW+,•), NW ) is still
in Zw′(L) since in particular s(Zw′) = Zw′ by Remark 2.4.9. Hence the nilpotent en-
domorphism induced by NW on the graded piece α−1(Dn1+···+ni)/α−1(Dn1+···+ni−1) for
i ∈ {1, . . . , r} is actually 0 since it must respect permutations of the induced flag. Ap-
plying Lemma 3.4.7 to each graded piece, we can define another triangulation sM•
on M which induces sα−1(D•) on DpdR(WdR(M)). We can then define the cycles
Zw′,s, Cw′,s ∈ Z[K:Qp]n(n+3)

2 (Spec ÔXr,r) as we defined Zw′ , Cw′ replacing M• by sM• and
xpdR by xpdR,s in the lower part of (4.11) (the part that is not concerned with w), and
note that Cw′,s is well defined thanks to Remark 2.4.9. It then easily follows from [12,
Lem.6.2] that it is enough to prove Cw′ = Cw′,s in Z[K:Qp]n(n+3)

2 (Spec ÔXr,r).
From (4.12) it is enough to prove Zw′′ = Zw′′,s for all w′′ � w′ such that aw′,w′′ 6= 0

and all reflections s ∈ Sn,w′ (note that Zw′′ 6= 0 if and only if Zw′′,s 6= 0 for such
w′′ � w′ by Remark 2.4.9). Denote by Z�

w′′ (resp. Z�
w′′,s) the equidimensional closed sub-

scheme of codimension 0 in SpecR
�

r,M• (resp. in SpecR
�

r,sM•) defined as the pull-back of
Spec ÔZw′′ ,xpdR (resp. Spec ÔZw′′ ,xpdR,s). Let A ∈ CL and (D(1)

A,•,D
(2)
A,•, NA) ∈ Ẑw′′,xpdR(A),

from s(Zw′′) = Zw′′ (Remark 2.4.9) we deduce as previously that the nilpotent endo-
morphism induced by NA on D(1)

A,n1+···+ni/D
(1)
A,n1+···+ni−1

for i ∈ {1, . . . , r} is actually 0
(since on each graded piece it must respect permutations of the induced flag and since
it is 0 on the diagonal as we are in Zw′′ ⊆ Z). Applying again Lemma 3.4.7 to each
graded piece, we can define a bijection s : Z�

w′′(A) ∼→ Z�
w′′,s(A) which is functorial in A

by permuting the triangulation MA,• of MA according to s. Hence the two complete
local rings underlying Z�

w′′ and Z�
w′′,s are isomorphic. Since this bijection doesn’t touch

the Galois deformations, they are moreover isomorphic as quotients of Ô�
Xr,r

where Ô�
Xr,r

is the affine ring of X�
r . This implies in particular that the two cycles Zw′′ and Zw′′,s are

the same in Z[K:Qp]n(n+3)
2 (Spec ÔXr,r). �

Theorem 4.3.9. Assume r ∈ Xr(L) is generic crystalline with distinct τ -Sen weights for
each τ ∈ Σ. Then Conjecture 4.3.4 is true for r.

Proof. For any refinement R, that is any ordering (ϕj1 , . . . , ϕjn) of the eigenvalues (ϕi)i of
ϕ[K0:Qp] onDcris(r), there is a unique triangulationM•,R onM such thatMi,R/Mi−1,R =
RL,K(unr(ϕji))[1

t
]. We denote by xR,pdR the point of X(L) corresponding toM•,R (fixing

the same framing α for all R).
Let δ = (δi)i ∈ T nL (L). If (r, δ) is not a point on Xtri(r) set Cr,Π := 0 for all constituants

Π of Iss
δ . If (r, δ) ∈ Xtri(r), then the assumptions imply δ ∈ T n0 and δ locally algebraic

and we set Cr,Πw′ := Cw′ for w′ ∈ S where Cw′ is defined using the triangulation M• of
Proposition 3.7.1 (and the associated xpdR) and where we use Proposition 4.3.8. Note
thatM• =M•,R for a refinement R uniquely determined by (δ1, . . . , δn). For all this to
be consistent, we have to check that if Πw′ occurs in some other Iss

δ′ with (r, δ′) /∈ Xtri(r),
then we have Cw′ = 0. Consider such a δ′ = (δ′i)i, there exists a permutation wτ ∈ Sn for
each τ ∈ Σ such that wtτ (δ′wτ (i)) < wtτ (δ′wτ (i+1)) (in Z) for all i and we set w := (wτ )τ ∈ S.
Then we have w′ � w using [41, §5.2] and [54]. Moreover there exists a unique refinement
R′ which is determined by (δ′1, . . . , δ′n) and it follows from Proposition 4.3.8 (and its
proof) that we can also define Cw′ usingM•,R′ instead ofM•,R =M•. Arguing exactly
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as before (4.9), we have Cw′ 6= 0 ⇔ wxR′,pdR � w′. As (r, δ′) /∈ Xtri(r), we must have
wxR′,pdR � w by Theorem 4.2.3. But then (since w′ � w) this implies wxR′,pdR � w′ and
thus Cw′ = 0.

It remains to check the equality of cycles in Conjecture 4.3.4 for (r, δ) ∈ Xtri(r)(L)
(if (r, δ) /∈ Xtri(r)(L) it amounts to 0 = 0 by definition of the Cr,Π). But in that case,
defining w as before Lemma 3.7.4 (i.e. as we did above for δ′ but with δ), we have by the
same argument as for Corollary 4.3.2:

[Spec ÔXtri(r)δ,(r,δ)] =
∑
w′∈S

Pw0w,w0w′(1)Cw′ ∈ Z[K:Qp]n(n+3)
2 (Spec ÔXr,r).

Since the constituant Πw′ appears in Iss
δ with multiplicity mδ,Πw′ = Pw0w,w0w′(1) (use

again [41, §8.4] and [54]), this finishes the proof. �

Remark 4.3.10. For r as in Theorem 4.3.9, the constituents Π such that mδ,Π 6= 0
for some δ ∈ T nL (L) are precisely (up to constant twist) the companion constituents
associated to r in [12, §6].

5. Global applications

Under the usual Taylor-Wiles hypothesis we derive several global consequences of the
results of §2 and §3: classicality of crystalline strictly dominant points on global eigen-
varieties, existence of all expected companion constituents in the completed cohomology,
existence of singularities on global eigenvarieties.

5.1. Classicality. We recall our global setting. Then we prove classicality of crystalline
strictly dominant points on global eigenvarieties under Taylor-Wiles assumptions.

We start by briefly reviewing the global setting of [17, §§3.1,3.2] and refer the reader
to loc.cit. for more details. We assume p > 2 and fix a totally real field F+, we write
qv for the cardinality of the residue field of F+ at a finite place v and we denote by Sp
the set of places of F+ dividing p . We fix a totally imaginary quadratic extension F of
F+ that splits at all places of Sp and let GF := Gal(F/F ). We fix a unitary group G in
n ≥ 2 variables over F+ such that G ×F+ F ∼= GLn/F , G(F+ ⊗Q R) is compact and G
is quasi-split at each finite place of F+. We fix an isomorphism i : G ×F+ F

∼→ GLn/F
and, for each v ∈ Sp, a place ṽ of F dividing v. The isomorphisms F+

v
∼→ Fṽ and i

induce an isomorphism iṽ : G(F+
v ) ∼−→ GLn(Fṽ) for v ∈ Sp. We let Gv := G(F+

v ) and
Gp := ∏

v∈Sp G(F+
v ) ' ∏

v∈Sp GLn(Fṽ). We denote by Kv (resp. Bv, resp. Bv, resp. Tv)
the inverse image of GLn(OFṽ) (resp. of the subgroup of upper triangular matrices of
GLn(Fṽ), resp. of the subgroup of lower triangular matrices of GLn(Fṽ), resp. of the
subgroup of diagonal matrices of GLn(Fṽ)) in Gv under iṽ and we let Kp := ∏

v∈Sp Kv

(resp. Bp := ∏
v∈Sp Bv, resp. Bp := ∏

v∈Sp Bv, resp. Tp := ∏
v∈Sp Tv). We fix a finite

extension L of Qp large enough to split all F+
v for v ∈ Sp and denote by g, b, b and t

the base change to L of the respective Qp-Lie algebras of Gp, Bp, Bp, Tp (so for instance
g ' ∏v∈Sp(gln)[F+

v :Q] ' (gln)[F+:Q]). We denote by T̂p,L and T̂v,L (v ∈ Sp) the base change
from Qp to L of the rigid analytic spaces over Qp of continuous characters of respectively
Tp and Tv. We identify the decomposition subgroup of GF at ṽ with GFṽ = Gal(F ṽ/Fṽ).

We fix a tame level Up = ∏
v Uv ⊂ G(Ap∞F+) where Uv is a compact open subgroup

of G(F+
v ) and we denote by Ŝ(Up, L) the p-adic Banach space over L of continuous
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functions G(F+)\G(A∞F+)/Up −→ L endowed with the linear continuous unitary ac-
tion of Gp by right translation on functions. A unit ball is given by the OL-submodule
Ŝ(Up,OL) of continuous functions G(F+)\G(A∞F+)/Up −→ OL and the corresponding
residual representation is the kL-vector space S(Up, kL) of locally constant functions
G(F+)\G(A∞F+)/Up −→ kL (a smooth admissible representation of Gp). We also denote
by Ŝ(Up, L)an ⊂ Ŝ(Up, L) the very strongly admissible ([29, Def.0.12]) locally Qp-analytic
representation of Gp defined as the L-subvector space of Ŝ(Up, L) of locally Qp-analytic
vectors for the action of Gp.

We fix S a finite set of finite places of F+ that split in F containing Sp and the set
of finite places v - p (that split in F ) such that Uv is not maximal. We can associate
to S a commutative spherical Hecke OL-algebra TS which acts on Ŝ(Up, L), Ŝ(Up, L)an,
Ŝ(Up,OL), S(Up, kL). We fix mS a maximal ideal of TS of residue field kL (increasing L
if necessary) such that Ŝ(Up, L)mS 6= 0, or equivalently Ŝ(Up, L)an

mS := (Ŝ(Up, L)an)mS 6=
0. We denote by ρ = ρmS : GF → GLn(kL) the unique absolutely semi-simple Galois
representation associated to mS and assume ρ absolutely irreducible. We let Rρ,S be the
noetherian complete local OL-algebra of residue field kL pro-representing the functor of
deformations ρ of ρ that are unramified outside S and such that ρ∨ ◦ c ∼= ρ⊗ εn−1 where
ρ∨ is the dual of ρ and c ∈ Gal(F/F+) is the complex conjugation. Then the spaces
Ŝ(Up, L)mS and Ŝ(Up, L)an

mS are natural modules over Rρ,S.

The continuous dual (Ŝ(Up, L)an
mS)∨ of Ŝ(Up, L)an

mS is a module over the global sec-
tions Γ(Xρ,S,OXρ,S) where Xρ,S := (Spf Rρ,S)rig and we denote by Y (Up, ρ) = Y (Up, ρ, S)
(forgetting S in the notation) the schematic support of the coherent O

Xρ,S×T̂p,L
-

module (JBp(Ŝ(Up, L)an
mS))∨ on Xρ,S × T̂p,L where JBp is Emerton’s locally Qp-analytic

Jacquet functor with respect to the Borel Bp ([28]) and (−)∨ means the continuous dual.
This is a reduced rigid analytic variety over L of dimension n[F+ : Q] which is a closed
analytic subset of Xρ,S × T̂p,L whose points are:{

x = (ρ, δ) ∈ Xρ,S × T̂p,L such that HomTp

(
δ, JBp(Ŝ(Up, L)an

mS [mρ]⊗k(ρ) k(x))
)
6= 0

}
where mρ ⊂ Rρ,S[1/p] denotes the maximal ideal corresponding to the point ρ ∈ Xρ,S

(under the identification of the sets underlying Xρ,S = (Spf Rρ,S)rig and SpmRρ,S[1/p]).
If U ′p ⊆ Up and S contains Sp and the set of finite places v - p that split in F such that
U ′v is not maximal, then a point of Y (Up, ρ) is also in Y (U ′p, ρ).

We let Xtri(ρp) be the product rigid analytic variety ∏v∈Sp Xtri(ρṽ) (over L) where ρṽ :=
ρ|GFṽ and Xtri(ρṽ) is as in §3.7 (remember we drop � everywhere, see loc.cit.). This is a
reduced closed analytic subvariety of (Spf Rρp)rig×T̂p,L where Rρp := ⊗̂

v∈SpRρṽ (recall Rρṽ

is defined at the beginning of §3.7). Identifying Bv (resp. Tv) with the upper triangular
(resp. diagonal) matrices of GLn(Fṽ) via iṽ, we let δBv := | · |n−1

Fṽ
⊗| · |n−3

Fṽ
⊗· · ·⊗ | · |1−nFṽ

be
the modulus character of Bv and define as in [16, §2.3] an automorphism ıv : T̂v,L ∼→ T̂v,L
by:

(5.1) ıv(δ1, . . . , δn) := δBv · (δ1, . . . , δiε
i−1, . . . , δnε

n−1).

Then the morphism of rigid spaces:

Xρ,S × T̂p,L −→ (Spf Rρp)
rig × T̂p,L(

ρ, (δv)v∈Sp
)

=
(
ρ, (δv,1, . . . , δv,n)v∈Sp

)
7−→

(
(ρṽ)v∈Sp , (ı−1

v (δv,1, . . . , δv,n))v∈Sp
)
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induces a morphism of reduced rigid spaces over L:
(5.2) Y (Up, ρ) −→ Xtri(ρp) =

∏
v∈Sp

Xtri(ρṽ).

We say that x = (ρ, δ) = (ρ, (δv)v∈Sp) = (ρ, (δv,1, . . . , δv,n)v∈Sp) ∈ Y (Up, ρ) is de Rham
(resp. crystalline) strictly dominant if ρṽ := ρ|GFṽ is de Rham (resp. crystalline) and if
the image of x in each Xtri(ρṽ) via (5.2) is strictly dominant in the sense of [17, §2.1].
Equivalently wtτ (δv,i) ≥ wtτ (δv,i+1) for all i ∈ {1, . . . , n− 1}, τ ∈ Hom(Fṽ, L) and v ∈ Sp
(recall wtτ (δv,i) ∈ Z by [16, Prop.2.9]).

Let δ = (δv)v∈Sp ∈ T̂p,L such that wtτ (δv,i) ∈ Z for all i, τ , v. Then we can write
δ = δλδsm in T̂p,L where λ = (λv)v∈Sp ∈

∏
v∈Sp(Zn)Hom(Fṽ ,L), δλ := ∏

v∈Sp z
λv (recall zλv

is z 7→ ∏
τ∈Hom(Fṽ ,L) τ(z)λv,τ,i) and δsm is a smooth character of Tp with values in k(δ)

(the residue field of the point δ ∈ T̂p,L). Following Orlik and Strauch, we define the
strongly admissible locally Qp-analytic representation of Gp over k(δ) (see [16, §3.5] for
the notation, see also Remark 5.1.2 below):

(5.3) FGp
Bp

(δ) := FGp
Bp

(
(U(g)⊗U(b) (−λ))∨, δsmδ

−1
Bp

)
where δBp := ∏

v∈Sp δBv and −λ is seen as a character of t and by inflation b � t as a
character of b. If λ is dominant, that is λv,τ,i ≥ λv,τ,i+1 for all i, τ , v, we let:

(5.4) LA(δ) := L(λ)⊗L
(
IndGp

Bp
δsmδ

−1
Bp

)∞
where L(λ) is the irreducible finite dimensional algebraic representation of Gp over L of
highest weight λ relative to Bp and (IndGp

Bp
−)∞ is the usual smooth principal series. It is

a locally Qp-algebraic representation of Gp over k(δ) which coincides with the maximal
locally Qp-algebraic quotient of FGp

Bp
(δ) and also with the maximal locally Qp-algebraic

subobject of (IndGp
Bp
δδ−1
Bp )an.

Let x = (ρ, δ) ∈ Xρ,S × T̂p,L with wtτ (δv,i) ∈ Z for all i, τ, v, the representation (5.3)
allows us to reformulate the condition x ∈ Y (Up, ρ) as (see [13, Th.4.3]):

(5.5) HomTp

(
δ, JBp(Ŝ(Up, L)an

mS [mρ]⊗k(ρ) k(x))
)

' HomGp

(
FGp
Bp

(δ), Ŝ(Up, L)an
mS [mρ]⊗k(ρ) k(x)

)
6= 0.

A point x = (ρ, δ) ∈ Y (Up, ρ) which is de Rham strictly dominant is called classical
if there exists a nonzero continuous Gp-equivariant morphism in the right hand side of
(5.5) that factors through the locally Qp-algebraic quotient LA(δ) of FGp

Bp
(δ). Equiva-

lently (ρ, δ) is classical if HomGp(LA(δ), Ŝ(Up, L)mS [mρ] ⊗k(ρ) k(x)) 6= 0 i.e. if ρ comes
from a classical automorphic representation of G(AF+) (satisfying the properties of [17,
Prop.3.4]). We then have the classicality conjecture.

Conjecture 5.1.1. Let x = (ρ, δ) ∈ Y (Up, ρ) be a de Rham strictly dominant point.
Then x is classical.

Remark 5.1.2. The careful reader may have noticed that the (generalization of the)
results of Orlik-Strauch that we use in [16], [17] and here are actually only stated in
[12, §2] and [13, §§2,3,4] for locally Qp-analytic representations of G(K) over L where
G is a split reductive algebraic group over K and L splits K. But looking at the form
of the group Gp, we see that we rather need (in [16], [17] and here) locally Qp-analytic
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representations of groups of the form G1(K1) × G2(K2) over L where Gi, i ∈ {1, 2}, is
split reductive over Ki and the finite extensions K1, K2 are not necessarily the same.
However, assuming that L splits K1 and K2, an examination of the proofs of the results
of [12, §2] and [13, §§2,3,4] (and of all the results of Orlik-Strauch and Emerton on which
they rely, see loc.cit.) shows that they all easily extend to the above case.

If x = (ρ, δ) ∈ Xρ,S × T̂p,L is crystalline, we denote by (ϕṽ,1 . . . , ϕṽ,n) ∈ k(x)n the
eigenvalues of ϕ[Fṽ,0:Qp] on Dcris(ρṽ).

Theorem 5.1.3. Assume F/F+ unramified, Uv hyperspecial if v is inert in F and
ρ(GF (p

√
1)) adequate ([62, Def.2.3]). Let x = (ρ, δ) ∈ Y (Up, ρ) be a crystalline strictly

dominant point such that ϕṽ,iϕ−1
ṽ,j /∈ {1, qv} for i 6= j and v ∈ Sp. Then x is classical.

Remark 5.1.4. Let x = (ρ, δ) ∈ Y (Up, ρ) be a point satisfying the assumptions in the
theorem, but without assuming that the point is strictly dominant. It follows from [13,
Prop.8.1(ii)] (see also [17, Theorem 5.5]) that there exists a point x′ = (ρ, δ′) ∈ Y (Up, ρ)
that is strictly dominant, and hence classical by the above theorem. We hence can
still deduce that the Galois representation ρ is automorphic (though the point x is not
necessarily classical itself).

Proof. By the argument following [17, (3.9)], we can assume Up small enough, i.e.:
(5.6) G(F ) ∩ (hUpKph

−1) = {1} for all h ∈ G(A∞F+).
We now briefly recall the construction of the patched eigenvariety Xp(ρ) of [16, §3.2]
and [17, §3.2] (to which we refer for more details, note that this construction uses the
above extra assumptions on F , Up and ρ). Fix an arbitrary integer g ≥ 1 and let
R∞ be the maximal reduced and Zp-flat quotient of (⊗̂v∈SRρṽ)[[x1 . . . , xg]]. Denote by
X∞ := (Spf R∞)rig and likewise by Xρp (resp. Xρp) the reduced rigid fiber of ⊗̂v∈S\SpRρṽ

(resp. ⊗̂v∈SpRρṽ). We thus have X∞ = Xρp × Xρp × U
g where U := (SpfOL[[y]])rig is the

open unit disc over L. Then following [19] one defines in [16, §3.2], [17, §3.2] for a specific
value of the integer g a certain continuous R∞-admissible unitary representation Π∞ of
Gp over L and an ideal a of R∞ such that Π∞[a] ∼= Ŝ(Up, L)mS . We then define Xp(ρ)
as the schematic support of the coherent O

X∞×T̂p,L
-module M∞ := (JBp(ΠR∞−an

∞ ))∨ on
X∞× T̂p,L. This is a reduced rigid analytic variety over L which is a closed analytic subset
of X∞ × T̂p,L whose points are:

(5.7)
{
x = (y, δ) ∈ X∞ × T̂p,L such that HomTp

(
δ, JBp(ΠR∞−an

∞ [my]⊗k(y) k(x))
)
6= 0

}
wheremy ⊂ R∞[1/p] denotes the maximal ideal corresponding to the point y ∈ X∞ (under
the identification of the sets underlying X∞ and SpmR∞[1/p]). Moreover Y (Up, ρ) is the
reduced Zariski-closed subspace of Xp(ρ) underlying the vanishing locus of aΓ(X∞,OX∞).
Define ι(Xtri(ρp)) := ∏

v∈Sp ιv(Xtri(ρṽ)) where ιv(Xtri(ρṽ)) is the image of Xtri(ρṽ) via the
automorphism id×ιv of Xρṽ × T̂v,L in (5.1). For each irreducible component Xp of Xρp ,
there is a (possibly empty) union XXp−aut

tri (ρp) of irreducible components of Xtri(ρp) such
that we have an isomorphism of closed analytic subsets of X∞ × T̂p,L:

(5.8) Xp(ρ) '
⋃
Xp

(
Xp × ι(XXp−aut

tri (ρp))× Ug
)
.

Note that the composition:

Y (Up, ρ) ↪→ Xp(ρ) ↪→ Xρp × ι(Xtri(ρp))× Ug � ι(Xtri(ρp))
ι−1
−→ Xtri(ρp)
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is the map (5.2).
Now consider our point x = (ρ, δ) ∈ Y (Up, ρ) and let Xp ⊂ Xρp be an irreducible

component such that x ∈ Xp × ι(XXp−aut
tri (ρp)) × Ug ⊆ Xp(ρ) via (5.8). For v ∈ Sp let

xv ∈ Xtri(ρṽ) be the image of x via:

Xp × ι(XXp−aut
tri (ρp))× Ug � ι(XXp−aut

tri (ρp))
ι−1
↪→ Xtri(ρp) � Xtri(ρṽ).

For each v ∈ Sp, by Corollary 3.7.10 applied to Xtri(ρṽ) and xv (which uses the as-
sumptions on ϕṽ,i, see Remark 3.7.9) there is a unique irreducible component Zv of
Xtri(ρṽ) passing through xv. If Z := ∏

v∈Sp Zv, from (5.8) we thus necessarily have
x ∈ Xp × ι(Z)× Ug ⊆ Xp × ι(XXp−aut

tri (ρp))× Ug. In particular, for Vv ⊆ Xtri(ρṽ) a suffi-
ciently small open neighbourhood of xv in Xtri(ρṽ) we have ∏v∈Sp Vv ⊆ Z ⊆ XXp−aut

tri (ρp)
and we see that the assumption in [17, Th.3.9] is satisfied. Hence x is classical by [17,
Th.3.9] (see also [17, Rem.3.13]). �

Remark 5.1.5. The assumptions on the ϕṽ,i in Theorem 5.1.3 do not depend on the
choice of the place ṽ above v. Moreover, here again as in Remark 4.2.4, assuming
F/F+ unramified, Uv hyperspecial for v inert in F and ρ(GF (p

√
1)) adequate, a little ex-

tra effort should produce classicality of de Rham strictly dominant points x = (ρ, δ) =
(ρ, (δv)v∈Sp) ∈ Y (Up, ρ) such that ι−1

v (δv) ∈ T nv,0 where ιv is (5.1) and T nv,0 is defined as in
§3.4 but with the field F+

v = Fṽ instead of K.

5.2. Representation theoretic preliminaries. We give here some technical lemmas
related to locally analytic representation theory that will be used in the next section.

We keep the notation of §5.1 and set T 0
p := Tp ∩Kp = ∏

v∈Sp(Tv ∩Kv). For a weight
µ = (µv)v∈Sp ∈

∏
v∈Sp(Zn)Hom(Fṽ ,L) denote by L(µ) (resp. L(µ)) the irreducible object of

highest weight µ in the BGG category O (resp. O) of U(g)-modules with respect to the
Borel subalgebra b (resp. b) ([41, §1.1]) and for w ∈ ∏v∈Sp S [Fṽ :Qp]

n set w ·µ := w(µ+ρ)−ρ
where ρ is half the sum of the positive roots of the algebraic group ∏v∈Sp SpecL×SpecQp
ResFṽ/Qp(GLn/Fṽ) with respect to the Borel subgroup of upper triangular matrices. Write
w0 = (w0,v)v∈Sp ∈

∏
v∈Sp S [Fṽ :Qp]

n for the longest element. If ε ∈ T̂p,L(L) is of derivative
µ, the theory of Orlik-Strauch [54] (extended as in Remark 5.1.2) gives us a locally Qp-
analytic representation of Gp over L (with the notation in (5.3)):

FGp
Bp

(
L(−µ)∨, εsmδ−1

Bp

)
' ⊗̂v∈SpFGvBv

(
L(−µv)∨, εsmδ−1

Bv

)
where the completed tensor product on the right hand side is with respect to the inductive
or projective tensor product topology (both coincide on locally convex vector spaces of
compact type, see [30, Prop.1.1.31] and [30, Prop.1.1.32(i)]).

Let Πan be a very strongly admissible locally Qp-analytic representation of Gp over L
([29, Def.0.12]). Let u be the base change to L of the Qp-Lie algebra of the unipotent
radical Up of Bp and U0 a compact open subgroup of Up.

Let M be an object of the category O. It follows from [54, Lem.3.2] that the action
of b on M extends uniquely to an algebraic action of Bp. We endow the L-vector space
HomL(M,Πan) with the adjoint action. More precisely, for b ∈ Bp and f ∈ HomL(M,Πan)
we define bf ∈ HomL(M,Πan) by the formula (bf)(m) := bf(b−1m) for m ∈ M . The
subspace HomU(g)(M,Πan) is preserved by this action. Namely, for f ∈ HomU(g)(M,Πan),
b ∈ Bp, x ∈ g and m ∈M , we have:

(bf)(xm) = bf(b−1xm) = bf(Ad(b−1)xb−1m) = bAd(b−1)xf(b−1m) = x(bf)(m)
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so that bf ∈ HomU(g)(M,Πan). In particular, we deduce from this fact that b acts trivially
and Bp smoothly on HomU(g)(M,Πan).

Denote by T+
p ⊂ Tp the multiplicative submonoid of elements t such that tU0t

−1 ⊆ U0,
then it is straightforward to check that the actions of U0 and Tp on HomU(g)(M,Πan)
are compatible with the relations tu0t

−1 ∈ U0 for t ∈ T+
p . Hence we can endow

HomU(g)(M,Πan)U0 with the usual action of T+
p defined by:

(5.9) f 7−→ t · f := δBp(t)
∑

u0∈U0/tU0t−1

u0tf.

Let ε ∈ T̂p,L(L) of derivative µ and εsm := εδ−µ. The characters ε : T+
p → L× and εsm

determine surjections of L-algebras L[T+
p ] � L and we denote their respective kernel by

mε and mεsm
(maximals ideal of the L-algebra L[T+

p ]). We also set m1 := ker(L[T+
p ] � L)

(resp. m1,sm := ker(L[T+
p /T

0
p ] � L) where the surjection is determined by the trivial

character of T+
p (resp. T+

p /T
0
p ) and we define for any integer s ≥ 1 the characters:

1[s] : T+
p

[ ]
↪→ L[T+

p ] � L[T+
p ]/ms

1 and 1[s]sm : T+
p � T+

p /T
0
p

[ ]
↪→ L[T+

p /T
0
p ] � L[T+

p /T
0
p ]/ms

1,sm.

The characters 1[s] and 1[s]sm can obviously be extended to Tp and we use the same symbol
to represent these extensions. Note that L[T+

p ]/ms
1 (resp. L[T+

p /T
0
p ]/ms

1,sm) is in CL and
that 1[s]sm is the maximal smooth quotient of 1[s] (which is necessarily unramified).
Lemma 5.2.1. Let M be an object of the category O and V a smooth representation of
Tp over L. There is an isomorphism of L-vector spaces:

HomGp

(
FGp
Bp

(Hom(M,L)u∞ , V (δ−1
Bp )),Πan

)
' HomT+

p
(V,HomU(g)(M,Πan)U0)

which is functorial in M .

Proof. It follows from [13, Th.4.3] and Remark 5.1.2 (we use here the very strongly
admissible hypothesis) that there exists a functorial isomorphism:

HomGp

(
FGp
Bp

(Hom(M,L)u∞ , V (δ−1
Bp )),Πan

)
' Hom(g,Bp)(M ⊗L C∞c (Up, V (δ−1

Bp )),Πan).

The result comes form the canonical isomorphism:
Hom(g,Bp)(M ⊗L C∞c (Up, V (δ−1

Bp )),Πan) ' HomBp(C∞c (Up, V (δ−1
Bp )),HomU(g)(M,Πan)).

and from the proof of [28, Th.3.5.6] which can be adapted to prove that there is an
isomorphism:

HomBp(C∞c (Up, V (δ−1
Bp )),HomU(g)(M,Πan)) ' HomT+

p
(V,HomU(g)(M,Πan)U0).

�

Lemma 5.2.2. Let L(ν) be an irreducible constituant of U(g) ⊗U(b) µ, for any s ∈ Z≥1
we have isomorphisms of L-vector spaces:

HomGp

(
FGp
Bp

(L(−ν), 1[s]smεsmδ−1
Bp )),Πan

)
' HomU(g)(L(ν),Πan)U0 [ms

εsm
].

Proof. This is a direct consequence of Lemma 5.2.1 together with the fact that if N is a
L[T+

p ]-module, then HomT+
p

(1[s]smεsm, N) ' N [ms
εsm

]. �

Lemma 5.2.3. For any s ∈ Z≥1 the L-vector space HomU(g)(U(g) ⊗U(b) µ,Πan)U0 [ms
εsm

]
is finite dimensional and we have an isomorphism of L-vector spaces:
HomGp

(
FGp
Bp

((U(g)⊗U(b)−µ)∨, 1[s]smεsmδ−1
Bp ),Πan

)
' HomU(g)(U(g)⊗U(b)µ,Πan)U0 [ms

εsm
].
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Proof. We have:

HomU(g)(U(g)⊗U(b)µ,Πan)U0 [ms
εsm

] ' HomU(t)(µ,Πan)U0 [ms
εsm

] ' HomU(t)(µ, (Πan)U0)[ms
εsm

]
' HomU(t)(µ, JBp(Πan))[ms

εsm
]

where the last isomorphism follows as in the proof of [28, Prop.3.2.12]. This shows the
first part of the statement since the last term is finite dimensional by the proof of [28,
Prop.4.2.33]. Now we have:

HomU(t)(µ, JBp(Πan))[ms
εsm

] ' (JBp(Πan)⊗ε−1)[ms
1][t = 0] ' HomT+

p
(1[s]sm, JBp(Πan)⊗ε−1)

' HomT+
p

(1[s]smε, JBp(Πan)).
The statement follows then from Lemma 5.2.1. �

Note that the case s = 1 of Lemma 5.2.3 gives in particular:
HomGp(F

Gp

Bp
(ε),Πan) ' HomU(g)(U(g)⊗U(b) µ,Πan)U0 [mεsm

]

where FGp
Bp

(ε) is as in (5.3).

Lemma 5.2.4. For any s ∈ Z≥1 the L-vector space HomU(g)(U(g) ⊗U(b) µ,Πan)U0 [ms
εsm

]
is finite dimensional

Proof. This is a direct consequence of Lemma 5.2.3, the left exactness of the
functor HomU(g)(−,Πan)U0 [ms

εsm
], the fact that each simple object of the category O is a

quotient of a Verma module and that each object of O has finite length. �

Assume now that Πan is such that, the functor HomU(g)(−,Πan) is exact on the category
O, which means that whenever we have a short exact sequence 0→M1 →M2 →M3 → 0
in O we also have a short exact sequence of L-vector spaces:
(5.10) 0→ HomU(g)(M3,Πan)→ HomU(g)(M2,Πan)→ HomU(g)(M1,Πan)→ 0.

The hypothesis (5.10) occurs in the following important case.

Lemma 5.2.5. Assume that the continous dual Π′ is a finite projective OL[[Kp]][1/p]-
module. Then the functor M 7→ HomU(g)(M,Πan) is exact on the category of finite type
U(g)-modules.

Proof. Let M be a finite type U(g)-module. Arguing as in the proof of [17, Lem.5.1] and
using that M is of finite type, we have:

HomU(g)(M,Πan) = lim−→
r→1

HomU(g)(M,Πr) ' lim−→
r→1

HomUr(g)(Ur(g)⊗U(g) M,Πr).

Moreover it follows from the proof of [57, Prop.4.8] that the functor M 7→ Ur(g)⊗U(g) M
is exact for a sequence of rationals r ∈ pQ converging towards 1. By exactitude of lim−→r

it
is thus enough to prove that the functor Mr 7→ HomUr(g)(Mr,Πr) is exact (for such r) on
the category of finite type Ur(g)-modules. This is exactly the same argument as in the
end of the proof of [17, Lem.5.1]. �

We now assume moreover that Πan is the locally Qp-analytic vectors of some continuous
admissible representation Π of Gp over L and satisfies property (5.10). If V is an L[T+

p ]-
module, let V [m∞εsm ] := ∪s≥1V [ms

εsm
].
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Lemma 5.2.6. The functor HomU(g)(−,Πan)U0 [m∞εsm ] is exact on the category O.

Proof. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence in O. By (5.10) and
the smoothness of the action of the compact group U0, we have a short exact sequence of
L[T+

p ]-modules:

(5.11) 0→ HomU(g)(M3,Πan)U0 → HomU(g)(M2,Πan)U0 → HomU(g)(M1,Πan)U0 → 0.
By the argument above [17, (5.10)], for M2 = U(g)⊗U(b) µ a Verma module, changing
U0 if necessary the L[T+

p ]-module HomU(g)(M2,Πan)U0 ' HomU(t)(µ, (Πan)U0) is an
inductive limit of L[T+

p ]-submodules on which some element z of T+
p acts via a compact

operator (we use here, as in loc.cit., the above extra assumption on Πan). Using the fact
that each object of O is a quotient of a Verma module, that objects of O have finite
length and the exactness of the functor HomU(g)(−,Πan)U0 on O, the statement is still
true for an arbitrary M2. Since z commutes with T+

p , it follows easily from the theory of
compact operators that (5.11) remains exact on the generalized eigenspace associated to
ε, i.e. after applying [m∞εsm ]. �

Finally, we recall one more statement which is [7, Lem.10.3].

Lemma 5.2.7. Let w ∈ ∏v∈Sp S [Fṽ :Qp]
n such that lg(w) ≤ lg(w0) − 2. Then there exist

distinct elements wi ∈
∏
v∈Sp S [Fṽ :Qp]

n for i ∈ {1, 2, 3} such that w � w1 � w3, w � w2 �
w3, lg(w1) = lg(w2) = lg(w) + 1 and lg(w3) = lg(w) + 2. Moreover w1 and w2 are the
only elements satisfying these properties.

5.3. Companion constituents. We recall the statement of the socle conjecture of [13,
§§5,6] in the crystabelline case and prove it in the crystalline case under (almost) the
same assumptions as those of Theorem 5.1.3.

We keep the notation of §5.1 and §5.2, in particular p > 2, G is quasi-split at finite
places and we fix Up, S and ρ as in loc.cit.. We fix a point ρ ∈ Xρ,S such that there exists
a classical x ∈ Y (Up, ρ) of the form x = (ρ, δ) for some δ ∈ T̂p,L. Equivalently by [17,
Prop.3.4] the Galois representation ρ is associated to an automorphic form π = π∞⊗Cπf of
G(AF+) such that πUpf (tensored by the correct locally Qp-algebraic representation of Gp)
occurs in the locally Qp-algebraic vectors of Ŝ(Up, L)mS . We denote by hṽ,τ,1 < · · · < hṽ,τ,n
the Hodge-Tate weights of ρṽ for the embedding τ ∈ Hom(Fṽ, L) (they are all distinct) and
set hṽ,i := (hṽ,τ,i)τ∈Hom(Fṽ ,L) for all v, i. We define λ = (λv)v∈Sp = (λv,1, . . . , λv,n)v∈Sp ∈∏
v∈Sp(Zn)Hom(Fṽ ,L) with λv,i = (λv,τ,i)τ∈Hom(Fṽ ,L) and λv,τ,i := hṽ,τ,n+1−i + i − 1 (so λ is

dominant). Moreover we assume that ρṽ for all v|p is crystabelline generic in the sense of
§4.3, which is equivalent to the condition that the semi-simple representation W (ρṽ) =
⊕ni=1ηṽ,i of the Weil group of Fṽ associated to ρṽ in [33] satisfies (η−1

ṽ,i ηṽ,j)◦recFṽ /∈ {1, | |Fṽ}
for i 6= j (compare [13, §6] when all Fṽ are Qp). This condition doesn’t depend on the
choice of ṽ above v. Note that, when ρṽ is crystalline, we have ηṽ,i = unr(ϕṽ,i) for all i
where the ϕṽ,i are the eigenvalues of ϕ[Fṽ,0:Qp] on Dcris(ρṽ), so we recover the condition in
Theorem 5.1.3.

We define a refinement R as a rule which to each v ∈ Sp associates an ordering Rv

on the set of characters {ηṽ,i, i ∈ {1, . . . , n}}. Let R be a refinement, w = (wv)v∈Sp ∈∏
v∈Sp S [Fṽ :Qp]

n and define δR,w = (δRv ,wv)v∈Sp ∈ T̂p,L with (see §4.2 for zwv(hṽ)):

δRv ,wv = (δRv ,wv ,1, . . . , δRv ,wv ,n) := ιv(zwv(hṽ)(ηṽ,j1 ◦ recFṽ , . . . , ηṽ,jn ◦ recFṽ))
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where (j1, . . . , jn) is the ordering Rv on {1, . . . , n}. Note that the derivative of δR,w is
precisely ww0 ·λ and that δR,w,sm (defined as before (5.3)) doesn’t depend on w, we denote
it by δR,sm = (δRv ,sm)v∈Sp ∈ T̂p,L. Define also xR,w := (ρ, δR,w) ∈ Xρ,S × T̂p,L. Then it
follows from [18, Th.1.1] and (5.5) (and the intertwinings on (IndGp

Bp
δsmδ

−1
Bp )∞ in (5.4))

that the assignment R 7−→ xR,w0 = (ρ, δR,w0) induces a bijection between the set of
refinements and the set of classical points in Y (Up, ρ) of the form (ρ, δ) for some δ ∈ T̂p,L.
Note that the residue field of all the points xR,w (a finite extension of L) doesn’t depend
on R or w, and increasing L if necessary we assume it is L.

The structure of Verma modules ([41, §5.2]) and the theory of Orlik-Strauch (extended
as in [12, Th.2.3] and Remark 5.1.2) imply that the irreducible constituents of:

FGp
Bp

(δR,w) = FGp
Bp

((U(g)⊗U(b) (−ww0 · λ))∨, δR,smδ−1
Bp )

are the locally Qp-analytic representations of Gp over L:

(5.12) FGp
Bp

(
L(−w′w0 · λ)∨, δR,smδ−1

Bp

)
' ⊗̂v∈SpFGvBv

(
L(−w′vw0,v · λv)∨, δRv ,smδ

−1
Bv

)
for w′ = (w′v)v∈Sp ∈

∏
v∈Sp S [Fṽ :Qp]

n such that w′ � w. For a refinement R and v ∈ Sp
denote by xR,w0,v the image of xR,w0 in Xtri(ρṽ) via (5.2) and set:

(5.13) wR := (wR,v)v∈Sp ∈
∏
v∈Sp
S [Fṽ :Qp]
n

where wR,v := wxR,w0,v
∈ S [Fṽ :Qp]

n is the permutation associated to xR,w0,v ∈ Xtri(ρṽ)
defined just before Proposition 3.6.4. The following is a direct generalization of the socle
conjecture of [13, Conj.6.1] (where all Fṽ were Qp). Recall that mρ ⊂ Rρ,S[1/p] is the
maximal ideal corresponding to ρ.

Conjecture 5.3.1. Let R be a refinement and w ∈ ∏v∈Sp S [Fṽ :Qp]
n , then we have:

HomGp

(
FGp
Bp

(
L(−ww0 · λ)∨, δR,smδ−1

Bp

)
, Ŝ(Up, L)an

mS [mρ]
)
6= 0

if and only if wR � w.

Remark 5.3.2. We point out that this conjecture is strictly stronger than predicting the
set of companion points of x = (ρ, zλ δR,sm) ∈ Y (Up, ρ), that is, Conjecture 5.3.1 implies:

(ρ, zµ δR,sm) ∈ Y (Up, ρ)⇐⇒ µ = ww0 · λ with wR � w.

In the following, we use the notation in the statement of Theorem 5.1.3.

Theorem 5.3.3. Assume F/F+ unramified, Up small enough (see (5.6)) with Uv hyper-
special if v is inert in F and ρ(GF (p

√
1)) adequate. Let ρ ∈ Xρ,S coming from a classical

point in Y (Up, ρ) such that ρṽ is crystalline and ϕṽ,iϕ−1
ṽ,j /∈ {1, qv} for i 6= j and v ∈ Sp.

Then Conjecture 5.3.1 is true.

Proof. We use notation from the proof of Theorem 5.1.3 and we shorten ΠR∞−an
∞ in Πan

∞,
δR,w0 in δR, xR,w0 in xR, FGpBp (L(−ww0 · λ)∨, δR,smδ−1

Bp ) in Πw and U(g)⊗U(b) µ in M(µ).
The proof being a bit long, we divide it into several steps.
Step 1
If HomGp(Πw, Ŝ(Up, L)an

mS [mρ]) 6= 0 then it follows from [12, Cor.3.4] (and Remark 5.1.2)
that the point xR,w ∈ Xρ,S × T̂p,L sits in Y (Up, ρ). Denote by xR,w,v its image in Xtri(ρṽ)
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via (5.2). By Theorem 4.2.3 this implies wR,v � wv for all v, hence wR � w. We are thus
left to prove that HomGp(Πw, Ŝ(Up, L)an

mS [mρ]) 6= 0 if wR � w.
Step 2
The action of Rρ,S on Ŝ(Up, L)mS factors through a certain quotient Rρ,S , hence we
can see ρ as a point of (Spf Rρ,S)rig. Moreover we have a surjection R∞/aR∞ � Rρ,S
which induces a closed immersion (Spf Rρ,S)rig ↪→ X∞ and we can also see ρ as a point
on X∞. Still denoting by mρ ⊂ R∞[1/p] the maximal ideal (containing the ideal a)
corresponding to the point ρ ∈ X∞ (under the identification of the sets underlying X∞
and SpmR∞[1/p]), from Π∞[a] ' Ŝ(Up, L)mS we get Πan

∞[mρ] ' Ŝ(Up, L)an
mS [mρ]. It is thus

equivalent to prove HomGp(Πw,Πan
∞[mρ]) 6= 0 if wR � w. From Lemma 5.2.2 (applied with

µ = λ and ν = ww0 · λ) it is enough to prove HomU(g)(L(ww0 · λ),Πan
∞[mρ])U0 [mδR,sm

] 6= 0
if wR � w. If V is an A-module and m a maximal ideal of A, define V [m∞] := ∪s≥1V [ms].
As L(ww0 · λ) is of finite type over U(g) we have:

(5.14) HomU(g)(L(ww0 · λ),Πan
∞[m∞ρ ])U0 [m∞δR,sm ] =

∪s≥1 HomU(g)(L(ww0 · λ),Πan
∞[ms

ρ])U0 [m∞δR,sm ].

Since the right hand side of (5.14) is nonzero if and only if:

HomU(g)(L(ww0 · λ),Πan
∞[mρ])U0 [mδR,sm

] 6= 0,

we see that it is enough to prove that HomU(g)(L(ww0 · λ),Πan
∞[m∞ρ ])U0 [m∞δR,sm ] 6= 0 if

wR � w.
Step 3
For a point y ∈ Xρp × ι(Xtri(ρp)) × Ug denote by ry (resp. mry) its image in X∞ (resp.
the corresponding maximal ideal of R∞[1/p]), by (rv)v∈Sp its image in Xρp and by ε its
image in T̂p,L. We assume that the image of y in Xρp lies in the smooth locus of the
reduced rigid variety Xρp , that y is crystalline generic (i.e. each rv is crystalline generic
as in the beginning of §5.3), and that the image of y in Xtri(ρṽ) is strictly dominant in
the sense of [17, §2.1]. We define µ = (µv)v∈Sp ∈

∏
v∈Sp(Zn)Hom(Fṽ ,L) as we defined λ

at the beginning of §5.3, wy ∈
∏
v∈Sp S [Fṽ :Qp]

n as we defined wR in (5.13), and for each
w ∈ ∏v∈Sp S [Fṽ :Qp]

n such that wy � w we define yw ∈ Xp × ι(Xtri(ρp)) × Ug as we defined
xR,w (note that we use here Theorem 4.2.3 and that yw0 = y). We let εw be the image
of yw in T̂p,L (the derivative of εw is ww0 · µ). We also define µHT = (µHT

v )v∈Sp with
µHT
v := (µv,τ,i − i+ 1)τ∈Hom(Fṽ ,L) (compare with ι−1

v in (5.1)).

We assume yw ∈ Xp(ρ) for some w ∈ ∏
v∈Sp S [Fṽ :Qp]

n such that wy � w. Arguing as
in the proof of [17, Th.5.5], it follows from Lemma 5.2.6 and from Lemma 5.2.5 that
the functor HomU(g)(−,Πan

∞)U0 [m∞ry ][m∞εw,sm ] from O to the category of R∞[1/p]-modules
is exact. Thus for every short exact sequence 0→M1 →M2 →M3 → 0 in O we have a
short exact sequence of R∞[1/p]-modules:

(5.15) 0 −→ HomU(g)(M3,Πan
∞[m∞ry ])

U0 [m∞εw,sm ] −→ HomU(g)(M2,Πan
∞[m∞ry ])

U0 [m∞εw,sm ]

−→ HomU(g)(M1,Πan
∞[m∞ry ])

U0 [m∞εw,sm ] −→ 0.
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We have moreover:

HomU(g)(M(ww0 · µ),Πan
∞[m∞ry ])

U0 [m∞εw,sm ] ' HomU(t)(ww0 · µ, (Πan
∞)U0)[m∞ry ][m

∞
εw,sm

]
' HomU(t)(ww0 · µ, JBp(Πan

∞))[m∞ry ][m
∞
εw,sm

](5.16)
⊆ JBp(Πan

∞)[m∞ry ][m
∞
εw

]

where the second isomorphism follows from the proof of [28, Prop.3.2.12] as in [17, (5.5)].
Recall from the proof of Theorem 5.1.3 that we have introduced the coherent OXp(ρ)-
moduleM∞ = JBp(Πan

∞)∨ on Xp(ρ). We easily check:

(5.17) JBp(Πan
∞)[m∞ry ][m

∞
εw

]∨ 'M∞ ⊗OXp(ρ) ÔXp(ρ),yw

where JBp(Πan
∞)[m∞ry ][m∞εw ]∨ ' lim←−s,t JBp(Π

an
∞)[ms

ry ][mt
εw

]∨ is the dual L-vector space (recall
from Lemma 5.2.3 that JBp(Πan

∞)[ms
ry ][mt

εw
] is finite dimensional). Denote by Xp(ρ)ww0·µ

the fiber at ww0 ·µ ∈ trig(L) of the composition Xp(ρ) −→ T̂p,L
wt−→ trig where T̂p,L wt−→ trig

is defined as in §4.3. We deduce in particular from (5.17):
(5.18)

HomU(t)(ww0 · µ, JBp(Πan
∞))[m∞ry ][m

∞
εw,sm

]∨ 'M(ww0 · µ) :=M∞ ⊗OXp(ρ) ÔXp(ρ)ww0·µ,yw

which is thus a finite type ÔXp(ρ)ww0·µ,yw
-module.

Step 4
We keep the notation and assumptions of Step 3. Denote in this proof by ÔX∞,ry the
completed local ring at ry of the scalar extension from L to k(yw) = k(y) (which contains
k(ry)) of the rigid space X∞. We have closed immersions:

(5.19) Spec ÔXp(ρ)ww0·µ,yw
↪→ Spec ÔXp(ρ),yw ↪→ Spec ÔX∞,ry

where the second one follows from (5.8), Proposition 3.7.3, Remark 3.6.1 and [49, Lem.2.3.3
& Prop.2.3.5]. It follows from the normality of Xρp× ι(Xtri(ρp))×Ug at yw (which follows
from Corollary 3.7.10) that we have isomorphisms of completed local rings ÔXp(ρ),yw '
ÔXρp×ι(Xtri(ρp))×Ug ,yw from which we deduce taking fibers at ww0 · µ:

(5.20) ÔXp(ρ)ww0·µ,yw
' ÔXρp×ι(Xtri(ρp))ww0·µ×Ug ,yw

where ι(Xtri(ρp))ww0·µ is defined asXp(ρ)ww0·µ (see Step 3). In particular Spec ÔXp(ρ)ww0·µ,yw

is equidimensional of codimension d := [F+ : Q]n(n+1)
2 in Spec ÔX∞,ry via (5.19) as so is

Spec Ôι(Xtri(ρp))ww0·µ,yw
in Spec ÔXρp ,(rv)v , see §4.3.

Denote by Zd(Spec ÔX∞,ry) the free abelian group generated by the irreducible closed
subschemes of codimension d in Spec ÔX∞,ry . If E is a finite type OX∞,ry -module (e.g.
E = HomU(g)(M(ww0 · µ),Πan

∞[m∞ry ])U0 [m∞εw,sm ]∨ by (5.16) and (5.18)), define as in (2.13):

[E ] :=
∑
Z

m(Z, E)[Z] ∈ Zd(Spec ÔX∞,ry)

where the sum runs over all irreducible subschemes Z of codimension d in SpecOX∞,ry

and m(Z, E) := length(ÔXp(ρ)ww0·µ,yw
)ηZ
EηZ (ηZ being the generic point of Z). If:

0 −→M1 −→M2 −→M3 −→ 0
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is a short exact sequence in O it follows from (5.15) that we have in Zd(Spec ÔX∞,ry):[
HomU(g)(M2,Πan

∞[m∞ry ])
U0 [m∞εw,sm ]∨

]
=
[

HomU(g)(M1,Πan
∞[m∞ry ])

U0 [m∞εw,sm ]∨
]

+
[

HomU(g)(M3,Πan
∞[m∞ry ])

U0 [m∞εw,sm ]∨
]
.

In particular since the irreducible constituents of M(ww0 · µ) are the L(w′w0 · µ) for
w′ � w (see [41, §5.2] or §2.4), we deduce in Zd(Spec ÔX∞,ry) by dévissage (see §2.4 for
Px,y(T )):

[M(ww0 · µ)] =
∑
w′�w

Pw0w,w0w′(1)[L(w′w0 · µ)]

where:
L(w′w0 · µ) := HomU(g)(L(w′w0 · µ),Πan

∞[m∞ry ])
U0 [m∞εw,sm ]∨.

Note that the ÔX∞,ry -module L(w′w0 · µ) doesn’t depend on w such that w � w′. Since
moreover L(w′w0 · µ) 6= 0 implies wy � w′ by the same arguments as in Step 1 and Step
2 using Theorem 4.2.3, we obtain:
(5.21) [M(ww0 · µ)] =

∑
wy�w′�w

Pw0w,w0w′(1)[L(w′w0 · µ)] ∈ Zd(Spec ÔX∞,ry).

Likewise, it follows from (5.20) and from (4.9) that we have:

(5.22) [ÔXp(ρ)ww0·µ,yw
] =

∑
wy�w′�w

Pw0w,w0w′(1)Cw′ ∈ Zd(Spec ÔX∞,ry).

Here Cw′ is the cycle in Zd(Spec ÔX∞,ry) obtained by pull-back along the formally smooth
projection Spec ÔX∞,ry � Spec ÔXρp ,(rv)v from the product over v ∈ Sp of the cycles
denoted Cw′v in §4.3. Note that we have Cw′ 6= 0 for wy � w′ � w. Moreover Cw′ doesn’t
depend on w (such that w � w′).
Step 5
Fix Xp ⊆ Xρp an irreducible component, Up its (Zariski-open) smooth locus and fix a
point y ∈ Up × ι(Xtri(ρp))×Ug as in the first part of Step 3. We assume here that the w
of Step 3 is w0, i.e. that y = yw0 ∈ Xp(ρ)Up where:

Xp(ρ)Up := Up × ι(Xtri(ρp))× Ug ∩Xp(ρ) = Up × ι(Xtri(ρp)X
p−aut)× Ug

(a Zariski-open subset of Xp(ρ)). It follows from the irreducibility of Xp(ρ)Up at y (which
itself follows from Corollary 3.7.10) and the argument in the proof of [17, Cor.3.12] using
[17, Lem.3.8] that the coherent sheafM∞ on Xp(ρ) is free of finite rank in the Zariski-
open dense irreducible smooth locus of an affinoid neighbourhood of y in Xp(ρ)Up . We
denote by my ≥ 1 this rank ofM∞ (which doesn’t depend on the chosen small enough
neighbourhood of y). Recall that if L(ww0 · µ) 6= 0 then we have yw ∈ Xp(ρ)Up by the
same argument as in the end of Step 2 and as in Step 1 using Lemma 5.2.2, [12, Cor.3.4]
and Remark 5.1.2.

We now consider the following induction hypothesis for integers ` ≤ lg(w0):

H`: for y ∈ Xp(ρ)Up as above with ` ≤ lg(wy), then [L(ww0 ·µ)] 6= 0 for all w � wy, and
the rank ofM∞ in the smooth locus of a small enough affinoid neighbourhood of
yw in Xp(ρ)Up is still my.

Remark 5.3.4. The part of the induction hypothesis concerning the rank my is a tech-
nical tool used in the induction. However, it seems to be an interesting statement in

81



its own right that this rank remains the same for all the yw, as these points can lie on
different connected components of the eigenvariety.

It is easy to see that Hlg(w0) holds. We prove Hlg(w0)−1, which amounts to proving
[L(µ)] 6= 0, [L(wyw0 · µ)] 6= 0 andM∞ free of rank my in the smooth locus around ywy .
Note first that the point y is smooth on Xp(ρ) as the image of y = yw0 in Xtri(ρṽ) is
a smooth point for every v ∈ Sp by (ii) of Proposition 4.1.5 and (ii) of Remark 4.1.6.
Hence M∞ is free of rank my at y and we deduce [M(µ)] = [M∞ ⊗OXp(ρ) ÔXp(ρ)µ,y] =
my[ÔXp(ρ)µ,y]. From (5.21) and (5.22) with w = w0 we get:

(5.23) [M(µ)] = [L(µ)] + [L(wyw0 · µ)] = myCw0 +myCwy ∈ Zd(Spec ÔX∞,ry)
using P1,1(1) = P1,w0wy(1) = 1 (as w0wy is a simple reflection). Let us first prove [L(µ)] 6=
0 (which is a priori stronger than just L(µ) 6= 0). Assume [L(µ)] = 0, then (5.23) gives
[L(wyw0 · µ)] = myCw0 + myCwy 6= 0 so that ywy ∈ Xp(ρ)Up . But applying (5.21) and
(5.22) with w = wy we get [L(wyw0 ·µ)] ∈ Z>0Cwy which is a contradiction as myCw0 6= 0,
thus [L(µ)] 6= 0. Now, by Lemma 5.2.2 applied with ν = µ, Πan = Πan

∞[ms
ry ] for all

s ≥ 1, and using that FGp
Bp

(L(−µ)∨, 1[t]smεsmδ−1
Bp ) is locally algebraic for all t ≥ 1 and

that 1[t]smεsmδ−1
Bp is an unramified representation of Tp, we deduce injections of R∞[1/p]-

modules:
HomU(g)(L(µ),Πan

∞[m∞ry ])
U0 [m∞εsm ] ↪→ HomKp(L(µ),Πan

∞[m∞ry ]) ↪→ HomKp(L(µ),Πan
∞).

By the argument in the proof of [17, Th.3.9] we obtain that:

support
(

HomU(g)(L(µ),Πan
∞[m∞ry ])

U0 [m∞εsm ]∨
)
⊂ Spec Ô

Up×Xµ
HT−cr
ρp

×Ug ,ry
' Cw0

as subsets of Spec ÔX∞,ry where the isomorphism follows from (4.8) (Ô
Up×Xµ

HT−cr
ρp

×Ug ,ry

being the completed local ring of the scalar extension from L to k(y)). From (5.23) we
necessarily deduce [L(µ)] ∈ Z>0Cw0 . Since Cwy 6= 0, we then obtain [L(wyw0 · µ)] 6= 0
from (5.23). The sheafM∞ is free of some rank m′y ≥ 1 in a neighbourhood of ywy by [16,
Th.2.6(iii)]. Applying again (5.21) and (5.22) with w = wy we get [L(wyw0 ·µ)] = m′yCwy ,
which plugged into (5.23) together with [L(µ)] ∈ Z>0Cw0 forces m′y = my. This finishes
the proof of Hlg(w0)−1.
Step 6
For w ∈ ∏v∈Sp S [Fṽ :Qp]

n endow HomU(t)(ww0·µ,Πan
∞[u])U0 (resp. HomU(t)(ww0·µ, JBp(Πan

∞)))
with the topology induced by HomL(ww0 · µ,Πan

∞[u]) ' Πan
∞[u] (resp. by HomL(ww0 ·

µ, JBp(Πan
∞)) ' JBp(Πan

∞)). The natural T+
p -equivariant morphism:

(5.24) HomU(t)(ww0 · µ, JBp(Πan
∞)) −→ HomU(t)(ww0 · µ,Πan

∞[u])U0

is continuous and identifies the left hand side with the space (HomU(t)(ww0 ·µ,Πan
∞[u])U0)fs

of [28, §3.2]. The injection:

(5.25) HomU(g)(L(ww0 · µ),Πan
∞)U0 ↪→ HomU(g)(M(ww0 · µ),Πan

∞)U0

' HomU(t)(ww0 · µ,Πan
∞[u])U0

with the induced topology on the left hand side is a closed immersion. Indeed, by a dévis-
sage it is enough to prove that, whenever we have a morphism M(ν) → M(ww0 · µ) of
Verma modules, then the induced map HomU(t)(ww0·µ,Πan

∞[u])U0 −→ HomU(t)(ν,Πan
∞[u])U0

is continuous (and its kernel is thus closed), which easily follows from the continuity of
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the action of g on Πan
∞. Since moreover (5.25) commutes with the actions of T+

p and of
R∞[1/p], by [28, Prop.3.2.6(iii)] we deduce a closed immersion compatible with Tp and
R∞[1/p]:
(5.26) (HomU(g)(L(ww0 · µ),Πan

∞)U0)fs ↪→ HomU(t)(ww0 · µ, JBp(Πan
∞)).

Taking continuous duals (5.26) yields a surjective morphism of coherent sheaves on
Xp(ρ)ww0·µ:
(5.27) Mww0·µ :=M∞ ⊗OXp(ρ) OXp(ρ)ww0·µ

� Lww0·µ.

The schematic support of Lww0·µ defines a Zariski-closed rigid subspace Yp(ρ)ww0·µ
in Xp(ρ)ww0·µ and we denote by Zp(ρ)ww0·µ ⊆ (Yp(ρ)ww0·µ)red the union of its irreducible
components of dimension dimXp(ρ)ww0·µ. We see from the definition of L(ww0 · µ) in
Step 4 that we have just as in (5.18):
L(ww0 · µ) ' Lww0·µ ⊗OXp(ρ)ww0·µ

ÔXp(ρ)ww0·µ,yw
' Lww0·µ ⊗OYp(ρ)ww0·µ

ÔYp(ρ)ww0·µ,yw
.

In particular L(ww0 · µ) 6= 0⇔ yw ∈ Yp(ρ)ww0·µ ⇔ yw ∈ (Yp(ρ)ww0·µ)red and, arguing e.g.
as for Lemma 2.5.5:
(5.28) [L(ww0 · µ)] 6= 0⇔ yw ∈ Zp(ρ)ww0·µ ⇔ yw ∈ Zp(ρ)Upww0·µ

where Zp(ρ)Upww0·µ := Zp(ρ)ww0·µ ∩Xp(ρ)Up ⊆ Xp(ρ)Up .
Step 7
Assuming H` (for some ` ≤ lg(w0)), we prove that, for any crystalline generic strictly
dominant point y ∈ Xp(ρ)Up , we have [L(ww0 · µ)] 6= 0 for those w � wy such that
` ≤ lg(w) and we have M∞ free of rank my in the smooth locus of a small enough
affinoid neighbourhood of yw in Xp(ρ)Up .

Consider the smooth Zariski-open and dense subset:

W̃ µHT−cr
ρp

:=
∏
v∈Sp

W̃
µHT
v −cr

ρṽ
⊂ X̃µHT−cr

ρp
:=

∏
v∈Sp

X̃
µHT
v −cr
ρṽ

and the closed immersion:
ιµHT :=

∏
v∈Sp

ιµHT
v

: X̃µHT−cr
ρp

↪→ Xtri(ρp)

defined in the proof of Theorem 4.2.3. Since there is only one irreducible component
of Xtri(ρp) passing through each point of ιµHT(W̃ µHT−cr

ρp
) by Corollary 3.7.10 (and the

definition of W̃ µHT−cr
ρp

), we have that W̃ µHT−cr,Xp−aut
ρp

:= ι−1
µHT(Xtri(ρp)X

p−aut)∩W̃ µHT−cr
ρp

is a
nonempty union of connected components of W̃ µHT−cr

ρp
. As in the proof of Theorem 4.2.3,

we define the locally closed subset:

W̃ µHT−cr,Xp−aut
ρp,w

:= W̃ µHT−cr,Xp−aut
ρp

∩
∏
v∈Sp

W̃
µHT
v −cr

ρṽ ,wv
⊂ W̃ µHT−cr,Xp−aut

ρp

for each w = (wv)v∈Sp ∈
∏
v∈Sp S [Fṽ :Qp]

n , and by the same argument as in loc.cit. using
that the morphism from W̃ µHT−cr,Xp−aut

ρp
to the product of the flag varieties is still smooth

we get the decomposition (where ∗ is the Zariski-closure in W̃ µHT−cr,Xp−aut
ρp

or equivalently
W̃ µHT−cr
ρp

):

(5.29) W̃ µHT−cr,Xp−aut
ρp,w

= qw′�wW̃ µHT−cr,Xp−aut
ρp,w

′
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with W̃ µHT−cr,Xp−aut
ρp,w

Zariski-open and dense.
Recall from (4.3) that, for y ∈ Up × ι(ιµHT(W̃ µHT−cr,Xp−aut

ρp
))× Ug, we have:

(5.30) y ∈ Up × ι(ιµHT(W̃ µHT−cr,Xp−aut
ρp,w

))× Ug ⇐⇒ w = wy,

we thus deduce from (5.29) and (5.30) that we have:

(5.31) y ∈ Up × ι(ιµHT(W̃ µHT−cr,Xp−aut
ρp,w

))× Ug ⇐⇒ w � wy.

Now, for w = (wv)v∈Sp ∈
∏
v∈Sp S [Fṽ :Qp]

n consider the morphism (recall W̃ µHT−cr
ρp

is
reduced by [17, Lem.2.2]):

ιµHT,w :=
∏
v∈Sp

ιµHT
v ,wv : W̃ µHT−cr

ρp
−→ Xρp × T̂p,L

where ιµHT
v ,wv is defined in (4.5). Fix w ∈ ∏v∈Sp S [Fṽ :Qp]

n such that ` ≤ lg(w), it follows
from (5.30), H` and (5.28) that we have:

Up × W̃ µHT−cr,Xp−aut
ρp,w

× Ug ⊆ (id×(ι ◦ ιµHT,w)× id)−1(Zp(ρ)Upww0·µ) ⊆ Up × W̃ µHT−cr
ρp

× Ug.

But the second inclusion being a closed immersion by base change, we deduce:

Up × W̃ µHT−cr,Xp−aut
ρp,w

× Ug ⊆ (id×(ι ◦ ιµHT,w)× id)−1(Zp(ρ)Upww0·µ).

Using (5.31), this exactly means that the companion point yw of any crystalline generic
strictly dominant point y ∈ Xp(ρ)Up such that wy � w and ` ≤ lg(w) is always in
Zp(ρ)Upww0·µ where µ is defined as in Step 3. In particular we have [L(ww0 · µ)] 6= 0 by
(5.28).

Let U be an open affinoid in Xp(ρ)Up containing yw for some wy � w and ` ≤ lg(w),
to prove the second part of the statement, it is enough to find one smooth point z in U
such thatM∞ is free of rank my at z. Consider:

U ∩
(
Up × ι(ιµHT,w(W̃ µHT−cr,Xp−aut

ρp,w
))× Ug

)
⊆ Xp(ρ)Upww0·µ,

it contains yw, and since it is open in Up× ι(ιµHT,w(W̃ µHT−cr,Xp−aut
ρp,w

))×Ug, its intersection
with the Zariski-open dense subset Up × ι(ιµHT,w(W̃ µHT−cr,Xp−aut

ρp,w
)) × Ug is nonzero. But

by (5.30), [16, Th.2.6(iii)] and H`, taking U small enough we know that M∞ is free of
rank my at any point of this intersection. This finishes the proof of Step 7.
Step 8
Let ` ≤ lg(w0)− 1, assuming H` we prove H`−1.

By Step 5 we can assume lg(wy) = ` − 1 ≤ lg(w0) − 2 and by Step 7 it remains to
prove that [L(wyw0 · µ)] 6= 0 and that M∞ is then free of rank my at ywy . Choose
wi, i ∈ {1, 2, 3} as in Lemma 5.2.7 applied to w = wy. By H` and Step 7 we have
ywi ∈ Xp(ρ)Up for i ∈ {1, 2, 3}. Moreover it follows from (ii) of Proposition 4.1.5 and (ii)
of Remark 4.1.6 that the ywi are smooth points of Xp(ρ)Up , hence M∞ is free at these
points. By H` and Step 7 again, its rank there is still my. Note that if w � w′ � w3, we
have w′ ∈ {w,w1, w2, w3}. Moreover if w′ � w and lg(w′) ≤ lg(w)−2, it follows from [10,
Th.6.0.4] and [10, Cor.6.2.11] that Bw0wB is in the smooth locus of Bw0w′B. Then [41,
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§8.5] implies that Pw0w,w0w′(1) = 1. Then, by (5.21) and (5.22) applied successively with
w = w1, w = w2 and w = w3, we deduce the three equalities of cycles in Zd(Spec ÔX∞,ry):

[L(wiw0 · µ)] + [L(wyw0 · µ)] = myCwi +myCwy , i ∈ {1, 2}(5.32)

(5.33) [L(w3w0 · µ)] + [L(w1w0 · µ)] + [L(w2w0 · µ)] + [L(wyw0 · µ)] = myCw3 +myCw1

+myCw2 +myCwy .

Moreover we have [L(wyw0 · µ)] = m′yCwy for some m′y ∈ Z≥0 (if [L(wyw0 · µ)] = 0 this
is obvious and if [L(wyw0 · µ)] 6= 0 argue as at the end of Step 5). The equality (5.32)
then implies [L(w1w0 ·µ)] + (m′y−my)Cwy = myCw1 , whereas plugging the expression for
[L(wiw0 ·µ)], i ∈ {1, 2} given by (5.32) into (5.33) yields [L(w3w0 ·µ)] + (my−m′y)Cwy =
myCw3 . Now an examination of (4.7) together with the very last assertion in (iii) of
Theorem 2.4.7, (ii) of Remark 4.1.6 and the implication Zw′ 6= 0⇒ wy � w′ show:

Cwy = Zwy and Cwi = Zwi , i ∈ {1, 2, 3}

where Zw′ are the cycles in Zd(Spec ÔX∞,ry) obtained by pulling back along the morphism
Spec ÔX∞,ry � Spec ÔXρp ,(rv)v the product over v ∈ Sp of the cycles denoted Zw′v in §4.3.
If m′y > my, then we see that Zwy must appear with a positive coefficient in the cycle
Cw1 = Zw1 , which is impossible since w1 6= wy. Likewise, if m′y < my, then Zwy must
appear with a positive coefficient in Cw3 = Zw3 , which is again impossible. We thus
deduce m′y = my ≥ 1 and [L(wyw0 · µ)] = myCwy 6= 0.
Step 9
Theorem 5.3.3 now follows from Hlg(wR) applied with y = yw0 = xR (all the assumptions
on y in Step 3 are satisfied, either trivially or arguing as in the proof of [17, Cor.3.12]). �

Remark 5.3.5. (i) With a little extra effort, it should be possible to prove two small
improvements of Theorem 5.3.3. The first, as in Remark 4.2.4 and Remark 5.1.5, is
that it should be possible to delete the assumption ρṽ crystalline for v|p (so keeping ρṽ
crystabelline generic as in Conjecture 5.3.1). The second is that, as in [13, Conj.6.2] in the
case where all Fṽ are Qp, it should also be possible, under the same assumptions (or may-
be even deleting the assumption ρṽ crystalline as above), to prove that any irreducible
locally Qp-analytic representation C of Gp which is a subquotient of a locally Qp-analytic
principal series of Gp over L and such that HomGp(C, Ŝ(Up, L)an

mS [pρ]) 6= 0 is one of the
constituents (5.12) for some refinement R and some w such that wR � w.
(ii) Several special cases or variants of Theorem 5.3.3 were already known. The GL2(Qp)-
case in the case of the completed H1 of usual modular curves goes back to [14]. In [24],
Ding finds some companion constituents for GL2 in the completed H1 of some unitary
Shimura curves by generalizing the method of [14]. Some very partial results for GLn(Qp)
in the present global setting with all F+

v = Qp (v ∈ Sp) were obtained in [25] and [13]. In
these works, there is no appeal to any patched eigenvariety, and hence one can sometimes
relax some of Taylor-Wiles assumptions. Finally, Ding proved the GL2-case of Theorem
5.3.3 in [26] without using the local model of §3 (but using the patched eigenvariety
Xp(ρ)).

5.4. Singularities on global Hecke eigenvarieties. We prove that the global Hecke
eigenvarieties Y (Up, ρ) can have many singular points.

We use the global setting of §5.1 (p > 2, G quasi-split at finite places, Up, S and ρ as
in loc.cit.) and denote by T̂ 0

p,L the base change from Qp to L of the rigid analytic spaces
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over Qp of continuous characters of T 0
p . If x = (ρ, δ) ∈ Y (Up, ρ) is a crystalline strictly

dominant point such that ϕṽ,iϕ−1
ṽ,j /∈ {1, qv} for i 6= j, v ∈ Sp, we define wx ∈

∏
v∈Sp S [Fṽ :Qp]

n

as we defined wR in (5.13).
Recall ([16, §3.2]) that there exists an integer q ≥ 0 and an embedding S∞ :=
OL[[Zqp]] ↪→ R∞ such that the map Y (Up, ρ) → Xp(ρ) factors through Xp(ρ) ×(Spf S∞)rig

SpL, where the map Spf L → Spf S∞ is the augmentation map. Moreover (see [16,
Th.4.2] and its proof), the map:
(5.34) Y (Up, ρ) −→ Xp(ρ)×(Spf S∞)rig SpL
induces a bijection of the reduced subspaces.

Proposition 5.4.1. Assume F/F+ unramified, Up small enough with Uv hyperspecial
if v is inert in F and ρ(GF (p

√
1)) adequate. Let x = (ρ, δ) ∈ Y (Up, ρ) be a crystalline

strictly dominant point such that ϕṽ,iϕ−1
ṽ,j /∈ {1, qv} for i 6= j and v ∈ Sp. Then the map

(5.34) is an isomorphism of rigid analytic spaces in a neighborhood of x. In particular,
Xp(ρ)×(Spf S∞)rig SpL is reduced at such a point.

Proof. Since ÔXp(ρ),x ' ÔXρp×ι(Xtri(ρp))×Ug ,x by Corollary 3.7.10, we now know that Xp(ρ)
is Cohen-Macaulay at x (by loc.cit.). Then by the argument in the proof of [16, Th.4.8]
(which needs this Cohen-Macaulay property, this was overlooked in the proof of [17,
Cor.5.18]) based on [16, Prop.4.7(ii)], we obtain that the rigid fiber productXp(ρ)×(Spf S∞)rig

SpL (which still contains x) is Cohen-Macaulay and reduced in a neighbourhood of x. �

Note that Proposition 5.4.1 gives an immediate complement to [16, Th.4.8].

Theorem 5.4.2. Assume F/F+ unramified, Up small enough with Uv hyperspecial if
v is inert in F and ρ(GF (p

√
1)) adequate. Let x = (ρ, δ) ∈ Y (Up, ρ) be a crystalline

strictly dominant point such that ϕṽ,iϕ−1
ṽ,j /∈ {1, qv} for i 6= j and v ∈ Sp. Then the rigid

variety Y (Up, ρ) is Cohen-Macaulay at x and the weight map Y (Up, ρ) −→ T̂ 0
p,L is flat at

x. Moreover, if wx ∈
∏
v∈Sp S [Fṽ :Qp]

n is not a product of distinct simple reflections, then
Y (Up, ρ) is singular at x.

Proof. The Cohen-Macaulay statement follows from the proof of Proposition 5.4.1. Then
flatness of the weight map is a direct consequence of Lemma 2.3.2, applied to (the spectra
of) the local rings at x and ω(x).

Let x as in the statement (without any assumptions on wx) and note first that x is
classical by Theorem 5.1.3. Thus by the argument in the proof of [17, Cor.3.12]) its image
in Xρp lies in the smooth locus of Xρp . Recall that it is enough to prove that x is singular
when viewed in Xp(ρ) via Y (Up, ρ) ↪→ Xp(ρ). This is the argument of the proof of [17,
Cor.5.18], except that there is a gap there since we need to know thatXp(ρ)×(Spf S∞)rigSpL
is isomorphic to Y (Up, ρ) in a neighbourhood of x, which is Proposition 5.4.1 above. Then
the proof of [17, Cor.5.18] can go on, yielding that x is smooth on Xp(ρ) if it is smooth
on Y (Up, ρ) (or on Xp(ρ)×(Spf S∞)rig SpL), equivalently that x is singular on Y (Up, ρ) if
it is singular on Xp(ρ).

For wx � w, we define the companion point xw ∈ Y (Up, ρ) as we defined xR,w in
§5.3 (it belongs to Y (Up, ρ) as a consequence of Theorem 5.3.3, see Step 1 in the proof
of loc.cit.) and we denote by x′ the common image of the xw in (the smooth locus of)
Xρp × Ug. Recall that the image of the “maximal” companion point xwx in Xtri(ρp) sits
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in Utri(ρp) := ∏
v∈Sp Utri(ρṽ) (see (3.29)). By the argument in the proof of Theorem 5.1.3

(based on Corollary 3.7.10), we can find a neighbourhood V of x′ in the smooth locus of
Xρp × Ug and neighbourhoods Up and Up,wx of respectively the image of x and of xwx in
Xtri(ρp) with Up,wx ⊆ Utri(ρp) such that V × ι(Up) (resp. V × ι(Up,wx)) is a neighbourhood
of x (resp. of xwx) in Xp(ρ). Note then that x is singular on Xp(ρ) if and only if the
image xp of x in Up ⊆ Xtri(ρp) is singular on Xtri(ρp).

As in the proof of [17, Prop.5.9] consider the automorphism wx,k : T̂p,L ∼→ T̂p,L where we
use the notation k of loc.cit. to denote the Hodge-Tate weights of (ρṽ)v∈Sp in decreasing
order for each v ∈ Sp and τ : Fṽ ↪→ L. We still denote by wx,k the automorphism
id×wx,k of Xρp × T̂p,L. The argument in the proof of [17, Prop.5.9] based on [17, Th.5.5]
shows that:

x ∈ V × ι(wx,k(Up,wx ×T̂ 0
p,L
T̂ 0
p,wx,k,L)) ⊆ Xp(ρ)

where T̂ 0
p,wx,k,L ⊆ T̂ 0

p,L is the closed rigid subspace defined as in [17, (5.11)] (and taking
the product over v ∈ Sp). In particular this implies as in [17, §5.3] that we have an
injection of k(xp)-vector spaces (tangent spaces):

T
wx,k(Up,wx×T̂0

p,L

T̂ 0
p,wx,k,L),xp ↪→ TXtri(ρp),xp .

Then exactly the same proof as for [17, Cor.5.17] in [17, §5.3] shows that:
(5.35) dimk(xp) TXtri(ρp),xp = lg(wxw0)− dwxw0 + dimXtri(ρp)

where dw ∈ Z≥0 for w ∈ ∏
v∈Sp S [Fṽ :Qp]

n is defined as before Proposition 4.1.5 but for
the algebraic group ∏

v∈Sp SpecL ×SpecQp ResFṽ/Qp(GLn/Fṽ). Since dwxw0 < lg(wxw0) if
(and only if) wxw0, or equivalently wx, is not a product of distinct simple reflections by
[17, Lem.2.7], we obtain that Xtri(ρp) is singular at xp in that case, which finishes the
proof. �

Remark 5.4.3. (i) The same argument as in the first part of the proof shows that if
Xp(ρ) is singular at a companion point xw ∈ Y (Up, ρ) ↪→ Xp(ρ) of x, then Y (Up, ρ) is also
singular at xw. Hence a natural question would be to ask which of the companion points
xw ∈ Xp(ρ) are still singular when w 6= w0. This is presumably related to Conjecture
2.3.7 via ÔXp(ρ),xw ' ÔXρp×ι(Xtri(ρp))×Ug ,xw and Proposition 4.1.5 (see e.g. (iii) of Remark
4.1.6).
(ii) The equality (5.35) shows that, if we denote by xv the image of x ∈ Y (Up, ρ) ↪→ Xp(ρ)
in Xtri(ρṽ), then dimk(xv) TXtri(ρṽ),xv is as expected by [17, Conj.2.8]. In particular we thus
have many points where [17, Conj.2.8] holds.
(iii) When wx is a product of distinct simple reflections, then by work of Bergdall ([3])
it is expected that Y (Up, ρ) is indeed smooth at x. Our method a priori doesn’t give
information on Y (Up, ρ) in that direction.
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